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Background | Probing cosmology & galaxy formation

experimental effects such as striping from spatial calibration
variations. The striping in the Haslam map is along the sur-
vey scan lines and was corrected to first order by the applica-
tion of a Wiener filter. (The filtered version of the Haslam
map is publicly available on the Legacy Archive for Micro-
wave Background Data Analysis [LAMBDA]Web site.) The
remaining adverse effects of the Haslam map are mitigated
by two effects: First, the template fit calls for only a small
Haslam correlation (see x 6 of Bennett et al. 2003b). Since the
correction is small, the error on the correction is negligible.
Second, the foreground contamination is most significant

only on the largest angular scales, so the Haslam resolution
limit and small-scale map artifacts are not significant sources
of error. The MEM solution only uses the Haslam map as a
prior, and the spinning dust limit only uses the full-sky
median of the Haslam map. Thus, the spinning dust limit is
insensitive to residual striping in theHaslammap.

The MEM results are used to assess the degree of fore-
ground emission remaining after the template subtraction.
The result is less than 7 lK rms at the Q band and less than 3
lK rms at both the V band and the W band for ‘ < 15. This
remaining foreground emission constitutes less than 2% of

Fig. 7.—Comparison of the COBE 53 GHz map (Bennett et al. 1996) with the W-band WMAP map. The WMAP map has 30 times finer resolution than
theCOBEmap.
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Figure 9. The cumulative halo mass function in eight simula-
tions of an HDM universe. Seven of these start from the same re-
alisation of the HDM density fluctuation field within a 100Mpc/h
box, but use different initial particle loads. One follows evolution
within a 200Mpc/h box in order to better constrain the high mass
end of the mass function. Simulations starting from a glass initial
load are indicated by solid lines, while those starting from a grid
are indicated by dashed lines. The number of particles in each
simulation is indicated by labels in the upper panel. The dotted
line in this panel is an approximate power-law fit to the low-mass
end of the mass function, and the lower panel replots the mass
functions relative to this power law in order to emphasise the up-
turn due to discreteness effects. Dashed vertical lines separated
by factors of two provide a rough indication of the scale where
spurious halos start to dominate in the various cases. The haloes
here were identified using an FOF algorithm with b = 0.2 (Davis
et al 1985).

somewhat larger masses in the glass case than in the grid
case. Notice also that the upturn for the N = 2563 glass
simulation in a 200h−1Mpc box agrees very well with that
for the N = 1283 glass simulation in a 100h−1Mpc box. This
confirms that it is the mean interparticle separation which
sets the mass scale, rather than properties of the simulation
code or of the particular HDM realisation simulated.

If we take the effective lower resolution limit of our
HDM simulations to be given by the dashed vertical lines
in the lower panel of Fig. 9, we find that it can be expressed
as Mlim = 10.1 × ρ̄ d k−2

peak, where ρ̄ is the mean density of
the universe, kpeak is the wavenumber at the maximum of
∆2(k), the dimensionless power per ln k in the linear initial
conditions, d = N−1/3L is the mean interparticle separation,
N is the number of simulation particles, and L is the side
of the computational box. For our HDM initial conditions
kpeak = 4.2×λ−1

fs = 0.1×(mν/30eV )Mpc−1. The coefficient
in our expression for Mlim is estimated directly from our
HDM results. It may depend significantly on the shape of
the primordial power spectrum and so need modification for
WDM initial conditions. The scaling Mlim ∝ N−1/3 should
still hold in this case, however. Comparing our formula
without modification to the numerical results of Bode et al.

(2001) using kpeak = 2.3 and 1.1 Mpc−1, as appropriate
for their two WDM models, gives Mlim = 3 × 1010 and
1.2× 1011h−1M". These values agree well with the upturns
in the mass functions which they plot in their Fig. 9. Thus
with a parametrisation based on the wavenumber at the
peak of ∆2(k), the dependence on the overall shape of the
power spectrum appears to be weak.

This effective resolution limit is unfortunate news for
simulations of HDM and WDM universes. In our high-
est resolution HDM model, for example, the N = 5123

glass simulation of a 100Mpc/h box, the resolution limit is
Mlim = 8.8 × 1012h−1M", which corresponds to a clump of
4300 simulation particles. Thus only halos with 5000 parti-
cles or more can be considered reliable. This is two or three
orders of magnitude below the masses of typical big halos in
the simulation. Contrast this with simulations of CDM uni-
verses where the positions, velocities and masses of haloes
are reasonably well reproduced even for objects with about
100 simulation particles, giving a logarithmic dynamic range
which is about twice as large. Furthermore the effective dy-
namic range in halo mass increases in proportion to N for
CDM simulations, but only in proportion to N1/3 in HDM
or WDM simulations.

These results are interesting for the question of whether
WDM models can reproduce the observed properties of
dwarf satellite galaxies in the Milky Way. Available kine-
matic data for dwarf spheroidals suggest that they are sit-
ting in dark matter halos with maximum circular velocities
of order 30 km/s (e.g. Stoehr et al. 2002; Kazantzidis et al.
2004) corresponding to masses (for an isolated object) of
about 1010M". After discounting the spurious low-mass ha-
los, the mass functions shown in Fig. 9 of Bode et al. (2001)
demonstrate that halos of such small mass are not expected
for a WDM particle mass of 175 eV and are still strongly
suppressed relative to ΛCDM for a mass of 350 eV. We in-
fer that WDM particle masses well in excess of 500 eV will
be necessary to produce “Milky Way” halos with sufficient
substructure to host the observed satellites. This is, however,
less stringent by a factor of several than constraints based
on structure in the Lyman α forest (e.g. Viel et al. 2006).
It will be interesting to carry out simulations of sufficient
resolution to test whether the internal structure of subhalos
in a WDM universe is consistent with that inferred for the
halos of Milky Way dwarfs. The resolution limitations we
have explored in this paper imply that, although possible,
this will be a major computational challenge.
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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h−1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
the usual strategy where we demand that conservation laws
are exactly held. We call this new strategy convergent.

Consider the following set of equations:
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where ρ̂i is as in equation 8 with η = 1/A
1
γ . Taylor ex-

panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.
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γ
i (32)

mava = (ma −∆m)vb (33)

ρi =

N�

j

mjWij(|rij |, hi) (34)

Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only differences
being that ρiρ̂i in the denominator becomes ρ2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The effect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.

2.2.1 The continuity equation in OSPH0

Notice that, unlike OSPH (RHA10), we now use the stan-
dard SPH density estimator (equation 19). This eliminates
an error in the continuity equation due to time and space

c� 0000 RAS, MNRAS 000, 000–000
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The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h−1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.

2.2 Higher order SPH: OSPH0

In this section, we derive the equations of motion for our new
higher order SPH (OSPH0). Our philosophy is to minimise
the truncation errors in the equations of motion, rather than
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Consider the following set of equations:

ρi =

N�

j

mjWij (19)

dvi

dt
=

N�

j

mj

ρiρ̂j
(Pj − Pi)∇iW ij (20)

Ai = const. (21)

which are closed by the equation of state:

Pi =

�
N�

j

mjA

1
γ
j Wij

�γ

(22)

where ρ̂i is as in equation 8 with η = 1/A
1
γ . Taylor ex-

panding as in §2.1 and RHA10, it is straightforward to show
that this system of equations is now accurate to O(0) by
construction.

EXTRA equations here just for talks

dvi

dt
=

N�

j

mj

ρiρj
(Pj − Pi)∇iW ij +

Pi

hiρi
E0 (23)

E0 = 2

N�

j

mj

ρj
∇x

i W ij � 2

�

V

dV∇x
W (24)

qi =
�

j

ajx
j
ij (25)

qi = a0,i + a1,ixij + a2,ix
2
ij (26)

�
N�

j

mjWij

�
1 xij x

2
ij

xij x
2
ij x

3
ij

x
2
ij x

3
ij x

4
ij

���
a0,i

a1,i

a2,i

�
=

N�

j

mjWij

�
qj

qjxij

qjx
2
ij

�
(27)

αloc,i =
hi|a2,i|

hi|a2,i|+ |a1,i|+ |a0,i|/hi
(28)

αi = αloc,i ;αi < αloc,i

α̇i =
αloc,i−αi

hi/vsig,i
;αi > αloc,i (29)

qdiss,i =

N�

j

mj

ρij
αijvpsig,ij(qi − qj)r̂ij · ∇iWij (30)

vpsig,ij =

�
|Pi − Pj |

ρij
(31)

P̃i = Ãiρ
γ
i (32)

mava = (ma −∆m)vb (33)

ρi =

N�

j

mjWij(|rij |, hi) (34)

dvi

dt
=

N�

j

mj

ρiρj
(Pi + Pj)∇iW ij (35)

Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only differences
being that ρiρ̂i in the denominator becomes ρ2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The effect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.

c� 0000 RAS, MNRAS 000, 000–000

Higher order SPH 3

Vi =

N�

j

mj

ρj
g
−1
ij Sij (17)

with:

Sij =
1
x

∂W ij

∂x

�
x
2
ij xijyij xijzij

yijxij y
2
ij yijzij

zijxij zijyij z
2
ij

�
(18)

where ∇x
i = h∇i; xij = (xij , yij , zij); x = |xij |; and gij =

ρj
ρi

ηi
ηj
.

The accuracy of the momentum equation is governed
primarily by the leading order E0 error that should be zero,
and by the V matrix that should approximate the Identity
matrix. Notice that the E0 term scales as O(h−1) and so
can even grow as the resolution is increased, leading to poor
convergence. In RHA10, we showed that this error is one of
the main reasons why mixing fails in SPH.

In this standard conservative strategy, there is nothing
else we can do at this stage. We can reduce E0 by brute-force
as we did in RHA10, but this requires very large neighbour
number which is prohibitively expensive.

To make progress, we must abandon conservative SPH
altogether and hunt for a new strategy for deriving our equa-
tions of motion. We suggest here a strategy based on the
truncation error. Instead of trying to ensure conservation
laws, we try to ensure that the SPH equations of motion are
as similar as possible to their Euler equation equivalents.
This is the same strategy that Oger et al. (2007) recently
employed in their Taylor-SPHmethod. We call this approach
to deriving the SPH equations of motion convergent.
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Equation 20 was already suggested in RHA10 and
amounts to subtracting the E0 error by construction. This
gives zero force by construction if there is no local pressure
gradient (which is not true in standard conservative SPH).
This is why it leads to a higher order method. Similar ver-
sions of this momentum equation have been discussed many
times in the literature (see e.g. Monaghan 1992). A recent
variant was proposed by Abel (2010) – the only differences
being that ρiρ̂i in the denominator becomes ρ2j . Such a mo-
mentum equation does remove the E0 error by construction,
leading to improved performance at flow boundaries. How-
ever, it does nothing to combat the second major problem
with mixing in SPH – the LMI. This leads to large spurious
pressure blips at flow boundaries. The effect of such blips is
somewhat alleviated, since the forces are locally smoothed
(this is what is means to put all of the densities inside the
momentum equation sum). However, the pressure blips are
nonetheless there and lead to very large boundary force er-
rors that eventually cause the code to crash. This is presum-
ably why Abel (2010) show no test results beyond about
1 Kelvin Helmholtz time, and no test results for genuine
sharp boundaries. As we discuss next, our OSPH0 method
instead manifestly smoothes over the pressures, which cures
this problem.
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Figure 9. Each frame shows a density slice through the cloud center at times t = 0.5, 1.0 and 1.5 τKH with densities varying from low
(blue) to high (red). The grid (Enzo) simulation (left) shows instabilities developing on the surface causing the cloud to fragment, while
these features are absent in the SPH (Gasoline) simulation (middle and right).

Figure 10. Evolution of the cloud with ‘analytic’ initial conditions using the CHARM code. Each frame shows a density slice through
the cloud center at times t = 0.24, 0.9, 1.7 and 2.5 τKH with densities varying from low (red) to high (blue).

hand side can create or diffuse vorticity. The first term is the
baroclinic term which is non vanishing if we have non-aligned
pressure and density gradients. This is the case in oblique
shocks like in the bow shock of our cloud simulation. The
second term is responsible for diffusing vorticity in space i.e.
taking local vorticity and spreading it into the general flow.
This means that as soon as we have viscosity, we will dampen
vorticity. Especially important is the vorticity generated in
the post shock flow, which should act to destabilize the cloud
together with the surface instabilities.

A study on how AV dampens small scale vorticity was
made by Dolag et al. (2005). By using a low viscosity formu-
lation of SPH they find higher levels of turbulent gas motions
in the ICM and noted that shocked clouds tend to be unsta-
ble at earlier times. However, by looking at their Figure 3
we note that the overall difference in the cloud evolution is
small. As we will see in the tests carried out below, lowering
the AV does not necessarily lead to improved results.

In order to understand the effect of artificial viscosity
in our cloud-wind test we have performed three simulations
with modified setting of the viscosity coefficients. These are
Gas 10mAV1, Gas 10mAV2 and Gas 10AV3, see Table 1
for viscosity values. A simulation using the Balsara switch
but with the standard (α = 1.0, β = 2.0) was also per-

formed. Fig. 11 shows the outcome of the simulations at
t = 0.25, 0.75, 1.5 and 2.25 τKH. We can directly see the im-
pact these terms have on the stability of the simulation.
The standard α = 1.0, β = 2.0 is the most stable one, most
probably due to the unphysical use of the α bulk viscos-
ity. The use of α = 0 and β = 2.0 or the Balsara switch
renders very similar visual results. This is because the Bal-
sara switch turns of viscosity where |∇·v|/(|∇·v+|∇×v|) is
significant, which is the case for shearing flows like on the
surface of the cloud. Note that this is a very noisy quantity
when measured using only 32 neighbours. By further lower-
ing the shock capturing β viscosity we make the cloud even
more unstable but it is not clear how physical this solution
is. The shock front gets more blurred and we see strong post
shock ringing effects. The reason for the increased instabil-
ity in the α = 0, β = 0.5, and α = 0, β = 0.1 case is most
probably due to high speed particles traveling through the
poorly captured shock region and transferring momentum
inside the cloud, perturbing it in an unphysical way.

We have performed simulations similar in spirit to the
SPH ones using Enzo-ZEUS. There is formally no need for
linear viscosity using this method except for hyper-sonic
flows, but it is interesting to study the effect of lowering
QAV in the same way as β. Fig 12 shows density slices from
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SPH-CS128

Resolving mixing in SPH 1523

Figure 4. A KHI (density ratio Rρ = 2) at τKH = 1 modelled with SPH, TSPH and OSPH using CS, CT and HOCT4 kernels (see equations 44–46). From left
to right the plots show, in a slice of width dx = 1 about the z-axis, density contours, a zoom-in on the particle distribution around one of the rolls, the magnitude
of the |E0| error (see equation 28) as a function of y and the pressure in a slice of width dx = 1 about the x-axis, as a function of y. The circles on the density
contour plots mark the size of the smoothing kernel, h.
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Resolving mixing in SPH 1525

Figure 6. Long-term evolution of the KHI in TSPH and OSPH versus the Eulerian code RAMSES. From left to right, the panels show density contours in a slice
of width dx = 1 about the z-axis at times τKH = 1, 2 and 3.
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Entropy cores in non-radiative galaxy cluster simulations 9

Figure 3. Spherically averaged density (upper panel) and mass-weighted
temperature profiles (lower panel) at z=0. The heavy (SPHS) and light
(SPH) solid, dotted, short dashed and long dashed curves correspond to the
×8, 32, 128 and 256 runs, plotted down to the gravitational softening εopt.
The light dotted curve in the upper panel corresponds to the dark matter
density profile in the× 256 SPH run.

will be more of a blight for the classic SPH runs, because they
are more likely to retain their gas and the passage of these cooler
clumps through the cluster core will lead to more frequent shocking
and stirring, leading to fluctuations in the central entropy that may
not be evident in lower resolution runs.

4.3 Redshift Evolution

So far, we have compared cluster properties at z = 0 in the SPH,
SPHS and AMR runs. We now consider cluster properties at earlier
times, whose evolution we distill in Figure 8. Here we show how
the spherically averaged estimates of the entropy, density and tem-
perature (top, middle and bottom panels), measured at a fiducial
radius R0.01=0.01Rvir, have varied with redshift since z ∼ 1. Re-
sults from the × 256 SPH and SPHS runs are indicated by crosses

Figure 4. Spherically averaged entropy profiles measured at z = 0. The
heavy (SPHS) and light (SPH) solid, dotted, short dashed and long dashed
curves correspond to the×8, 32, 128 and 256 resolution runs, plotted down
to the gravitational softening εopt. Overplotted are the results of the AMR
128 and 256 runs – heavy solid (dotted) curves connecting filled triangles
(circles). See text for further discussion.

Figure 6. Sensitivity to Artificial Bulk Dissipation Constant αmax.
Spherically averaged entropy profiles assuming dissipation is switched off
(i.e. αmax=0; dotted-dashed curve); switched on and set to its default value
(i.e. αmax=1; long dashed); and switched on and set to αmax=2 and 5
(short dashed and dotted respectively). For comparison we show also the
profile from the corresponding classic SPH run (solid curve).

SPH

SPHS AMR

Hydrodynamics | A ‘non-radiative’ galaxy cluster
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Figure 6. Sensitivity to Artificial Bulk Dissipation Constant αmax.
Spherically averaged entropy profiles assuming dissipation is switched off
(i.e. αmax=0; dotted-dashed curve); switched on and set to its default value
(i.e. αmax=1; long dashed); and switched on and set to αmax=2 and 5
(short dashed and dotted respectively). For comparison we show also the
profile from the corresponding classic SPH run (solid curve).

tive to both the choice of numerical dissipation parameters and the
numerical resolution (see §5.2 for further discussion of this). In this
paper, we have tested a new SPH algorithm – SPHS – that is de-
signed to converge with increasing resolution independently of the
choice of dissipation parameters (Read & Hayfield 2012); we also
present explicit comparisons with an AMR code RAMSES, simi-
larly to the original study of (Frenk et al. 1999). Our suite of simu-
lations that explore resolution, dissipation parameter and choice of
hydrodynamic solver allow us to pin-point the precise reasons for
the differences between the SPH and AMR simulations.

At high redshift, z ∼ 1, there are already significant differ-
ences between the codes. Although SPH agrees qualitatively with
SPHS and AMR at these early times, there is significantly more
scatter between simulations of differing resolution. As the resolu-
tion is increased, the entropy core in SPH fluctuates significantly
in amplitude by a factor up to ∼ 150 (cf. Figure 9), suggest-
ing non-convergent behaviour. This can be traced to the spurious
surface tension reported originally in Agertz et al. (2007). As de-
tailed in Read et al. (2010) and Read & Hayfield (2012), this owes
to multi-valued pressures at phase boundaries. Since these drive
pressure waves through the fluid, this propagates numerical errors
away from regions of converging flow to the whole fluid domain
(cf. Figure 10; pressure discontinuities are more pronounced in the
SPH run). By contrast, in SPHS we introduce numerical dissipation
when the flow is converging designed to ensure single valued pres-
sures (and indeed to ensure all fluid quantities are single-valued).
This keeps errors local, ensuring that they shift to smaller scales
with increasing numerical resolution and, thereby, guaranteeing nu-
merical convergence.

At low redshift z = 0, the SPH results appear to converge
on an ever lower central entropy. However, this illusion of conver-
gence is actually driven by low entropy gas that artificially sinks to
the cluster centre, protected by its numerical surface tension. This
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Figure 7. Code Comparison: Visual Impression Projected gas density
maps in the SPH, SPHS and AMR runs (from top to bottom) within a 15
h−1Mpc cube centred on the cluster at z = 0.
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Figure 8. Redshift variation of the spherically averaged entropy S0.01, den-
sity ρ0.01 and temperature T0.01 (upper, middle and lower panels) mea-
sured at a fiducial cluster-centric radius of 0.01Rvir. Crosses, filled squares
and filled triangles correspond to SPH, SPHS and AMR results.

Figure 9. Spherically averaged entropy profiles at z=1. As in Figure 4, the
heavy (SPHS) and light (SPH) solid, dotted, short dashed and long dashed
curves correspond to the×8, 32, 128 and 256 resolution runs, plotted down
to the gravitational softening εopt.

creasing resolution7. This underscores the key problem with sub-
grid turbulence models: there is no guarantee that they will produce

7 The effect is smaller if small-scale waves are omitted from the higher res-
olution simulation, but convergence is not convincingly shown. There are
also some oddities. With a very large diffusion coefficient at fixed resolu-
tion, they actually form a lower amplitude core than that formed with inter-
mediate values (see their figure 12). This counter-intuitive behaviour may

a faithful convergence on the continuum Euler equations. By con-
trast, the dissipation in SPHS is numerical. It is required in order to
ensure single-valued fluid quantities throughout the flow, but is oth-
erwise kept to a minimum. The situation is similar in the RAMSES
code where minimal (and therefore unavoidable) numerical dissi-
pation follows from the Riemann solver (e.g. van Leer 1979). In
both cases, we expect a rigorous convergence on the continuum
Euler equations with increasing resolution.

The works of Wadsley et al. (2008) and Maier et al. (2009)
leave a dangling question mark over whether or not it is useful –
or indeed essential – to build physically motivated sub-grid turbu-
lence models, or whether we can be satisfied with simply keep-
ing numerical dissipation to a minimum and performing numerical
convergence studies. We can address this point using SPHS by di-
alling up αmax to large values and seeing how this impacts results
on resolved scales. This is shown in figure 6. Notice that the results
for the entropy profile of the gas are in excellent agreement even for
very large values of αmax = 5. Visual inspection of the gas density
profiles show that the αmax = 5 simulation is significantly more
dissipative than the αmax = 1 default case. However, such dissi-
pation shifts to smaller scales with increasing resolution and the
equivalent comparison at ×32 resolution shows even fewer differ-
ences: the results for SPHS converge independently of our choice
of αmax (cf. Figure 5). Furthermore – despite the very different na-
ture of the errors, error propagation, and numerical dissipation –
the SPHS simulations converge on a solution in remarkable accord
with the AMR simulation (see figure 8).

Our results suggest that while numerical dissipation is neces-
sary in any numerical method, so long as it is kept to a minimum
its effect on non-radiative galaxy cluster simulations is benign. Fur-
thermore, there appears to be no requirement to physically model
sub-grid dissipation processes. Indeed, doing so may even be un-
desirable if it leads to a spurious transfer of information from unre-
solved to resolved scales. This could spoil convergence, preventing
a correct solution of the Euler equations in the continuum limit.

5.3 What is the role of gravitational shock heating as an
entropy generation mechanism in galaxy clusters?

Real galaxy clusters in the Universe are known to split into two
types: CC and NCC (see §1). Armed with our results from SPH,
SPHS and AMR we can now return to the question of the physical
origin of this dichotomy. It is clear that in the absence of radiative
cooling, entropy cores consistent with NCC clusters form, with the
entropy generated from shocked gas during the cluster assembly
process. It is likely, however, that real NCC clusters result from a
more complex interplay between heating and cooling in the clus-
ter core (McCarthy et al. 2008). While it is beyond the scope of
this work to fully explain the observed dichotomy between NCC
and CC clusters in nature, we have laid the foundations for such a
study. Understanding the numerically well-defined problem of non-
radiative galaxy clusters allows us to move with confidence to more
physically realistic simulations that model also cooling, star forma-
tion and feedback from supernovae and active galactic nuclei. This
will be the subject of forthcoming papers.

simply reflect the limitations of the simplified sub-grid turbulence model
employed.
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Thermal instabilities in galactic coronae 7

Figure 1. Projected surface density plots for SPH-96-res0 (left) and SPHS-96-res0 (right), both with Ngas = 1.5 × 105, at t = 2Gyr.
There is a clear difference in the amount of structures present in the hot halo due to supernovae feedback - in SPH the shape of the
overpressurised bubbles is more defined and a number of spherical clumps have condensed out of the ambient gas. In SPHS the gas
distribution is more homogeneous, and no such clumps have formed.

by the SMBH, and some undergoing a starburst that drives
a hot bubble into the gaseous halo. In the SPHS case, this
initial feedback is slightly stronger, with the gas that has
received the thermal ‘kick’ reaching higher temperatures -
a maximum of 5 × 108 K vs. 8 × 107 K - and expanding
slightly faster than in the SPH case. Immediately after the
feedback event, the accretion rate drops by several orders of
magnitude (see Figure 5). The expanding shell slows down
as it sweeps up mass from the gaseous halo, and it is at
this point that the two simulations differ; in the SPH run
the gas is able to make its way back inside the central few
kiloparsecs, where it cools and forms stars, giving rise to a
second starburst at ∼ 1.2Gyr. In the SPHS case, however,
the gas has not collapsed back into the central regions by
the end of the simulation at t = 2Gyr, and so there is no
associated subsequent starburst event by this time.

We can understand some of these differences by looking
at the star formation history between the two low resolution
runs, which can be seen in Figure 5 along with the accretion
history. The SMBH accretion rate largely follows the star
formation rate, and so in the SPH run there are 2-3 major
starburst and accretion events that take place to later times
after the initial one. In the SPHS case the initial starburst
lasts for longer – rather than undergoing a sudden event and
then dropping to zero, as it does in SPH, the star formation
rate shows a more sustained period of activity for the first
∼ 0.5Gyr. This is the reason for the lack of the second star-
burst in the SPHS run - the sustained initial star formation
and feedback has driven the gas to higher temperatures and
lower densities and so it takes a much longer time to cool

and condense back into the central regions, failing to do so
by the end of the simulation at t = 2Gyr. We have run this
particular simulation on for longer, and the second starburst
does indeed occur after ∼ 2.5 Gyr.

Crucially, even at this low resolution we can see that
by far the main difference in the projected gas density maps
(Figure 1) between the SPH and SPHS simulations is the
presence of overdense clumps that have condensed from the
ambient halo gas between ∼ 10− 50 kpc. These clumps are
not present in the SPHS run, and we go into more detail on
this particular result for the higher resolution case in Section
3.1.3.

3.1.2 Higher resolution (res1)

The higher resolution runs constitute our fiducial compari-
son between the two methods. Gas surface density projec-
tions at t = 1.2 Gyrs are shown in Figure 2. Once again the
initial starburst and feedback events are similar, although
the initial feedback is slightly stronger in SPHS than in
SPH, with the kicked gas reaching a maximum of 108 K
vs. 2 × 107 K and again expanding faster. At this resolu-
tion the peak of the star formation rate for this starburst is
slightly higher in SPHS. Due to the stronger feedback, more
of the gas is evacuated in the initial overpressurised bubble,
and takes longer to make its way back inside the expand-
ing shell. The accretion rate in SPHS is therefore reduced
for the period immediately following the first starburst (be-
tween ∼ 0.2− 0.7Gyr) compared to SPH (see Figure 6).

Also at this higher resolution there are subsequent ma-

c© 0000 RAS, MNRAS 000, 000–000
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Figure 2. Projected surface density plots for SPH-96-res1 (left) and SPHS-96-res1 (right), both with Ngas = 7.5× 105, at t = 1.2Gyr.
While there is structure in both runs at this resolution, the mode of structure formation is very different, with the gas that has cooled
to ∼ 104 K condensing into a myriad of clumps in the SPH run but forming into two distinct filaments in the SPHS run. As a result, the
manner in which the central gaseous disc grows is different; in SPH some of the clumps scatter off one another and fall into the centre
to feed the disc, whereas in SPHS the disc grows as gas is funnelled down through the dense filaments that form due to the intersection
of two or more supernovae-driven bubbles.

jor starbursts in both the SPH and SPHS runs. The second
large starburst occurs at ∼ 1Gyr, and takes place slightly
earlier in SPH than in SPHS. This time the second SPH star-
burst is more powerful than the SPHS one. We attribute this
to the fact that immediately before the second starburst the
SPH run saw multiple condensing gas clumps entering the
central few kiloparsecs, which was not seen in SPHS. The
expanding bubbles in the second starburst also differ notice-
ably between the two methods – in SPH the boundaries of
the cavities are thinner whereas in SPHS these outer ‘walls’
are more mixed in with the surrounding gas (see Figure 2).

The star formation and accretion histories for the higher
resolution runs can be seen in Figure 6. Most noticeable is
the presence of three peaks in the SFR to later times in the
SPHS run, compared to two peaks in SPH. Once again the
accretion rate largely follows the SFR, although not pre-
cisely, and in particular we notice that whenever there is a
strong dip in the SFR, the corresponding dip in the Ṁbh

is not as extreme. This is also true for the peaks, with the
exception of the first peak of the later starburst/accretion
events in SPHS at t ∼ 1Gyr. We have already mentioned
how the second SPH starburst is more powerful than its
SPHS equivalent, and this is seen also in the SFR, with the
SPH peaking at a higher rate and falling off more slowly.

From this point on our comparisons are made with the
higher resolution set of runs. We outline a few specific differ-
ences that we wish to highlight between the results obtained
with the SPH and SPHS methods. Before we do this, how-

ever, we make a brief note on the convergence properties of
the two (res0 and res1) resolutions. As we have mentioned
in Section 2.5, we do not expect the star formation histo-
ries in our simulations to converge as we go up in resolu-
tion, since the approach applied to the polytropic cooling
floor and subsequent star formation is non-convergent, as is
standard in the field. It is worth acknowledging that in a
simulation such as this (with stochastic star formation and
a relatively violent initial starburst) the potential gas mor-
phologies can readily diverge given even a small change in
star formation history. As a result, it would be surprising
to see detailed convergence of all aspects of the simulation.
Nonetheless, there is convergence in the primary result of
this paper, which is clumps in SPH vs. no clumps in SPHS
at these resolutions.

3.1.3 Clumps vs. filaments

Of particular interest is the behaviour of the two methods
just after t = 1Gyr. As we have already mentioned, the
SPH run has started to see condensing clumps form out
of the halo gas, which fall into the centre and form stars,
giving rise to a powerful second starburst. As the bubble
expands through the surrounding gas, there appears to be a
sudden condensation of multiple dense clumps from the pre-
viously low-density gas. These clumps scatter off each other
as they fall to the centre, but remain seemingly protected
from the ambient gas through which they travel. The clumps

c© 0000 RAS, MNRAS 000, 000–000
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clearly be seen from the Figure, the only locations where
these physical clumps arise are in the streams and in the
disc at the centre. The overdensity here is ∼ 10−100, which
is consistent with the instability threshold for a non-linear
perturbation in Joung et al. (2012).

The gas flowing through the filaments ends up con-
tributing to the disc, as do the physical clumps that form
from the fragmentation of the filament. Some of these, how-
ever, form stars before they can reach the disc, and therefore
end up as orbiting stellar clusters, with masses of ∼ 107 M!.
The stellar clusters, while they are still star-forming, con-
tribute to the continued feedback events and can therefore
aid the formation of subsequent streams that may feed the
disc.

In order to quantify the ability of the cold gas in the
filaments to grow the disc, in Figure 12 we plot the gas
mass contained in particular phase regions (the same regions
marked in Figures 7 & 8 but for our highest resolution full
SPHS run). We also plot the rate of increase or decrease in
mass within this region to measure the feeding rate through
the filaments. The main period of interest is after the second
starburst, and we see from Figure 12 (top plot) that the
streams (and the physical clumps formed in the streams)
are feeding the central disc at a rate of ∼ 1M! yr−1 for the
first Gyr after the starburst. This rate is gradually declining
over time, and by t = 2Gyrs has dropped to ∼ 0.1M! yr−1.
Looking at the middle plot, we see further that the gas on
the polytrope (most of which is in the disc) exhibits a similar
rate of decrease in mass; this can be explained by referring to
the SFR (bottom) plot in Figure 11, which shows that the
feeding rate of the disc by the filaments is approximately
matched by the star formation rate, since most of the star
formation is occurring in the disc at this time.

The 3rd (bottom) plot of Figure 12 shows the amount
(and rate of increase/decrease) of gas in the region of the
phase diagram that we have identified as corresponding to
the gas recently ejected from supernovae explosions. We see
here that this is by far the dominant repository for the
gas that has already fallen into the central regions - the
mass contained in stars, disc, filaments and physical clumps
combined adds up to <

∼ 1/10th of the mass that has been
ejected into the hot halo, the latter being on average ∼ 1-
2× 1010 M!.

5 DISCUSSION

We find a clear difference in how cold gas condenses from
a hot halo in SPHS versus ‘classic’ SPH. The formation of
∼ hundreds of cold clumps from relatively homogeneous re-
gions of the hot halo in SPH owes to a numerical thermal
instability. As hot supernovae-driven bubbles collide in the
halo, the gas between the bubbles is compressed to high
density and cools. The flow is highly shearing and the over-
density rapidly shears away. Due to the lack of multiphase
mixing, however, the gas remains cold leading to a pressure
dip that seeds the formation of a dense clump of gas. By con-
trast, in SPHS the shearing gas mixes both in density and
entropy and the numerical clumps do not form; instead the
gas forms into cold filaments that feed the disc. In our high-
est resolution SPHS run, these filaments break up to form
bound, ‘physical clumps’. This fragmentation is physically-
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Figure 11. Projected surface density plot of the SPHS-442-res2
run at t = 0.73Gyr (top) and SFR/SMBH histories (bottom;
linestyles as per Figure 5). As in the lower resolution case, we see
the formation of one or more cold filaments that have formed out
of the surrounding gas as a result of the interaction of supernovae-
driven hot bubbles. The filaments are funnelling gas down onto
the disc at the centre of the computational domain. The progeni-
tors of gas-rich ‘physical clumps’ that are formed in the filaments
and in the disc are marked in blue. The SFR history shows 3-4
distinct starburst phases, closely followed by the SMBH accretion
rate.
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1.N-body discreteness errors produce spurious sub-structures.          
We introduce a novel form of adaptive force softening to solve this; 
potentially wide-ranging implications are under study. 

2. ‘classic’ SPH has problems modelling fluid mixing between different 
phases. We present a solution - SPHS - that gives quite different results 
for galaxy formation simulations:

• Non-radiative simulations ⇒ Entropy core;

• With cooling ⇒ No more “cold blobs”; 

• Gas discs have higher angular momentum; and 

• Cold streams form at the intersection of SNe bubbles, driving 
continuing star formation (positive feedback).

• Cosmological simulations underway ... 

Conclusions


