The Causal Connection Between Inflows, Outflows, and Disk Star Formation in ART Simulations

Elizabeth Klimek New Mexico State University

In Collaboration With: C.W. Churchill, D. Ceverino, S. Trujillo-Gomez, A. Klypin, Jacob Vander Vliet

UCSC Galaxy Workshop, August 16, 2013

What is the relationship between processes in the disk and in the CGM?

- Disk:
 - Star formation
 - Feedback
- CGM:
 - Flow of gas due to accretion and outflow
 - Ram pressure and tidal stripping
- Steidel et al. 2010: observed cause and effect relationship between SF in disk and gas mass in CGM

Mass Flux Through High Redshift Galaxies Simulated with ART

Ceverino & Klypin (2009), Kravtsov et al. (1997), Kravtsov (1999, 2003)

- ART Code:
 - Hydrodynamic AMR code
 - High-resolution (30-70 pc) cosmological simulation of MW progenitor between 2<z<4
 - $(10^{10.7} < M_{vir} < 10^{11.2} M_{sol})$
 - Thermal feedback due to SNII and SNIa, stellar winds
 - No AGN
- Define Simulated Galaxy Components:
 - Central cylindrical region representing the disk
 - All baryons outside of disk region out to 2 R_{vir} considered to be part of CGM
- Calculate the SFR in the disk
- Calculate the mass flux of inflowing/outflowing baryons and dark matter through spherically symmetric shells in the halo
 - Gas in different temperature ranges as probed by ionic tracers in absorption line studies

Mass Flux

 Joung et al. 2012 studied gas accretion by calculating the mass flux of gas through the CGM of a simulated MW-mass galaxy at z=0 (a single snapshot in time)

$$\dot{M}(R) = \sum_{i=1}^{n(R)} \frac{M_i \, V_i \cdot (-\hat{r}_i)}{dR}$$

$$\text{Peek (2008)}$$

- Expanding on this idea:
 - How does the flow of material through the CGM affect star formation in the disk?
 - How does star formation in the disk affect the flow of material through the CGM?

Outflowing components: +v

Inflowing components: -v_r

Radial Inflowing/Outflowing Mass Flux

Starburst Event: Before...

Satellite infalling at ~130 km/s

Starburst Event: During...

- Hot gas outflowing at ~400 km/s, well above v_{esc}
- Infall is not affected

Starburst Event: After...

- Hot outflow slows (~130 km/s) and disperses
- Infall still unaffected

Star Formation and Outflows: Diffuse Wind

- SFR consistent with predictions of Behroozi (2013) at z=2
- Wind composed entirely of hot gas—no cool gas seen
 - Steidel et al. 2010: low ionization absorption due to MgII, SiII,SiIII,SiIV, CIV, etc... tells us that there are outflows of cool gas.
- Wind speeds consistent with previous work by Ceverino & Klypin (2009) and with observations of outflow speeds in Lyman Break Galaxies (Steidel et al. 2010)
 - Wind achieves escape velocity, also consistent with with Steidel
- Outflow rate comparable (greater than or equal to) SFR (Pettini 2002, Steidel 2010)
- Inclusion of radiation pressure should reduce the amount of hot gas

Summary

- The time evolution of the mass accretion rate of gas enables a way to track and quantify the flow of gas through the CGM
- The time evolution of the mass accretion rate of dark matter and stars shows merging events that contribute to the buildup of the disk
- Cause and effect relationship can be seen
 - Diffuse outflowing wind follows a star formation event
 - However, can't discern what triggers the outflow
 - Dynamically induced?
- Hot, low density wind
 - Transports hot gas beyond 2 R_{vir}, in ~140 Myr
 - Does not disrupt the flow of infalling gas
 - Does not disrupt/strip infalling structures
- Next:
 - Quantify the mass loading factor, gas fractions, gas and stellar mass lost/gained by disk and satellites
 - Look at metallicity cuts
 - How will the inclusion of radiation pressure change the outflow?