2013 Santa Cruz galaxy workshop

Formation of Disk Galaxies

Yu Lu (KIPAC/Stanford)

Collaborators: Houjun Mo (UMass), Risa Wechsler (Stanford)

Model for disk formation

- Baryons follow dark matter to collapse into halos.
- Cooling gas (or cold accretion) collapses onto the central galaxy.
- Cold gas is rotationally supported.
- Cold gas in the disk fragments to form stars.
- Star formation feedback ejects some of the cold gas out of the galaxy (e.g. Dekel & Silk 1986).

Model for disk formation

- Baryons follow dark matter to collapse into halos.
- Cooling gas (or cold accretion) collapses onto the central galaxy.
- Cold gas is rotationally supported.
- Cold gas in the disk fragments to form stars.
- Star formation feedback ejects some of the cold gas out of the galaxy (e.g. Dekel & Silk 1986).

Basic observational constraints

Cold baryon mass fractions in ejection models

- Baryons accrete into a dark matter halo at the cosmic baryon fraction, f_b.
- Gas cools and collapses on a galaxy too rapidly.
- Strong feedback is assumed. Mass loading factor increases with decreasing halo mass, -20 for 10¹Msun halos.

Another side of the same problem

 Galaxy formation is too rapid in low mass halos at high redshift.

 We need a mechanism to delay star formation (cooling or gas accretion) in low mass halos.

Another side of the same problem

 Galaxy formation is too rapid in low mass halos at high redshift.

 We need a mechanism to delay star formation (cooling or gas accretion) in low mass halos.

Another outstanding problem: disk size - stellar mass relations

Angular momentum

- The spin parameter of galactic disk is about that of the host halo.
- It is difficult to predict in models and simulations:
 - j distribution is more extended to large radii.
 - The fuel is always from inner halo.

Dutton & van den Bosch 2012

Angular momentum

- The spin parameter of galactic disk is about that of the host halo.
- It is difficult to predict in models and simulations:
 - j distribution is more extended to large radii.
 - The fuel is always from inner halo.

Dutton & van den Bosch 2012

Preventive model

- The IGM is preheated to a finite entropy uniformly. At z=0, S-15kevcm², which happens to be the virial entropy of 10¹²Msun halos. $S_{\text{vir}} = \frac{T_{\text{vir}}}{n_{e,\text{vir}}^{2/3}}$
- The IGM entropy evolves with z as $S-1/(1+z)^2$, which implies T_IGM<6x10^5K.

Preventive model

- The IGM is preheated to a finite entropy uniformly. At z=0, S-15kevcm², which happens to be the virial entropy of M_10¹²Msun halos. $S_{\text{vir}} = \frac{T_{\text{vir}}}{\frac{2/3}{2}}$
- The IGM entropy evolves with z as $S-1/(1+z)^2$, which implies T_IGM<6x10^5K.
- Solve hydrostatic equilibrium for the halo hot gas configurations, and predict cooling out of the hot halo.
- Assuming a j distribution (Bullock et al. 2001) and j conservation, we predict the cold gas profile in the central disk (Mo, Mao & White 1998).
- Follow star formation with Krumholz et al. model (2009, and updated version).
- Minor outflow (mass loading factor =1 for MW halos, decreases to 0.1 for 10^11Msun halos).

How entropy affects the halo baryon fraction

 $S = \frac{T}{n_e^{2/3}}$ $T_{\rm vir} \propto V_c^2 \propto M_{\rm vir}^{2/3}$ $f_b \propto M_{\rm vir}$ $M_b \propto M_{\rm vir}^2$

How entropy affects the distribution and cooling of hot halo gas

• We solve hydrostatic equilibrium in a halo potential:

 $\frac{1}{\rho} \frac{\mathrm{d}p}{\mathrm{d}r} = -G \frac{M(< r)}{r^2} \qquad S(r) = S_0 \left(\frac{r}{r_{\mathrm{vir}}}\right)^{\beta}$

$$\rho(x) = \rho_{\rm vir} \left\{ 1 + \frac{4}{5} \mathcal{E} \frac{c}{\ln(1+c) - \frac{c}{1+c}} \left[\frac{\ln(1+cx)}{cx} - \frac{\ln(1+c)}{c} \right] \right\}^{3/2}$$

0 10

Hot gas distributions with different entropy profiles

Gas cooling in halos with different entropy profiles

mass distribution of cooling baryons

j distribution of cooling baryons

Halo mass assembly histories

Simulation: Bolshoi (klypin et al. 2012)

Cold baryon mass fractions

SFR histories

The growth of galactic disks

Disk size - stellar mass relations

Disk size - stellar mass relations

Summary

- Physically motivated model for hot halo gas (accretion fraction and hot gas distribution)
- Key quantity: entropy. A uniform entropy distribution in IGM is assumed. The entropy may be enhanced by feedback of early starburst galaxies (Mo & Mao 2003), gravitational shocks of pancake formation(Mo et al. 2005), Blazers heating (Pfrommer et al. 2012), multiphase cooling (Maller & Bullock 2004).
- When S_IGM-S_12, the diffused baryon is prevented from accreting into low mass halos, resulting M_b-M_h^2.
- Hot halo gas has an extended distribution when it has been preheated. Cooling of the hot gas is from a large range of radii.
- The model reproduces f_*-M_halo, f_cold-M_halo relations for low mass galaxies.
- The model reproduces the disk size stellar mass relations.
- No strong feedback is needed for low-z low-mass galaxies.