The Stellar Mass Perspective on the Virgo Cluster

Joel C. Roediger (Queen's) Collaborators: S. Courteau, M. McDonald, N. Ouellette 2013 Santa Cruz Galaxy Workshop

The SHIVir survey

(Spectroscopy & H-band Imaging of Virgo cluster galaxies)

- grizH light profiles for 286 galaxies with $M_B \leq$ -15 (McDonald +11)
- $D_{M87} \sim 0 1.8 \text{ Mpc}$ $\Sigma \sim 3 - 15 \text{ Mpc}^{-2}$
- Long-slit optical spectra in emission/absorption for ~230 galaxies (Ouellette+, *in prep*.)

Virgo – summary of work to date

Reference	Topic(s)
Roediger +11a	Trends in colours/colour gradients of Virgo galaxies against morphology, galaxy structure & local environment
Roediger +11b	As above, but in terms of stellar mean age & metallicity
Roediger +12	Comparison of age gradients of individual Virgo disks against predictions of hydrodynamic simulations (albeit of field galaxies) in light of their light profile shapes (re: stellar migrations)

Galaxy	Gradient(s)*			* Significant
type	<i>g</i> – <i>H</i>	< <i>A</i> >	Z	for each aalaxy type
E/SO	– (W)	+/flat (W)	– (M/W)	
dE/dS0	– (S)	+/flat (W)	– (M)	W = weak,
Spirals	– (S)	$+ \rightarrow - (W)$	– (M/S)	S = strong

How can we add to those results?

Quantity	Definition	(Loose) Meaning
<a>	$\int t \cdot SFR(t) \cdot dt$	Shape of SFH
Z	_	Enrichment history
M_{\star}	$\int SFR(t) \cdot dt$	Star formation efficiency history

- Interesting questions related to M_* :
 - what is the M_* budget for the Virgo cluster?
 - how are galaxies in Virgo structured by mass?
 - what is the empirical $M_* M_{halo}$ relation?

Measuring stellar masses

Systematics in *M*_{*} estimation

Note: Be03 &Ta11 relations calibrated on real galaxies

- Relations for optical colours differ by ≤ 0.3 dex, driven by model ingredients & priors (see also Pforr +12)
- Other systematics fitting method, number of spatial dimensions (≤ 0.2 dex; see also Zibetti +09)

Intrinsic accuracy of *M*_{*} estimates

 M_* can be estimated to within ~40% b/o g-i colours alone!

The distribution of *M*_{*} <u>amongst local galaxies</u>

Trend(s) in stellar/dark matter fraction with galaxy structure

More

stellar

mass

More dark-to -stellar matter

Summary

• Higher proportion of massive galaxies found in Virgo $(M^* \sim 10^{10.8-11} \text{ M}_{sun})$ relative to field $(M^* \sim 10^{10.2-10.7} \text{ M}_{sun})$

- global environment matters (see also Calvi +13)

- Amongst (*B/T*, C_{28} , *M*, μ_e , R_e), shapes of stellar mass density profiles appear to be best predicted by μ_e
 - M_*/L does not vary strongly with radius, on average
- Scatter in M_* at fixed M_{dyn} amounts to ~0.2-0.5 dex, and DM fraction within galaxies ~ $f(C_{28}, \text{ galaxy type})$
 - "weak (strong)" feedback in high- C_{28} early-types (late-types) lead to halo contraction (expansion)?

Pondering the future

Use/obtain ...

(1) deep optical imaging of Virgo to fully characterize galaxy population to 10⁵⁻⁶ M_{Sun}

- (2) LOS velocities of Virgo dwarfs and spirals to constrain their cluster-centric orbits
- (3) spatially-resolved (deep/wide-field) spectra of sub-sample ($N \sim 30-40$) of SHIVir galaxies to derive their detailed stellar population + kinematic properties

(4) kinematic $(V_{rot}^2 + \sigma^2)$ profiles to estimate M_{halo}