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as done in P12 and shown in the right panel of Fig. 1. In

such c – σ(M)
−1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (σ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (σ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

−0.5 � log[σ(M)]
−1 � 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

different redshifts, the model can be safely used to predict

concentration values of any simulation data whose σ(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5�

i=0

ci ×
�
ln

�
M200

h−1M⊙

��i

, (1)

where ci = [37.5153,−1.5093, 1.636 · 10−2, 3.66 · 10−4,
−2.89237 · 10−5, 5.32 · 10−7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
−6 < h−1M⊙ < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 � h−1M⊙ � 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in γ-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation γ-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in ΛCDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The effect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ∼10
5h−1M⊙, still very far from the

predicted halo cut-off mass, of the order of 10
−6h−1M⊙ or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L ∝ c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the ΛCDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

� M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4πMc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) − 1/(1 + c), and dN/dm =

A/M (m/M)
−α

is the subhalo mass function. Values for

α ranging between α = 1.9− 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for α = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of

c� 2002 RAS, MNRAS 000, 1–??
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boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-
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by the fact that most subhalos at present time have been
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2.1.4 Scatter

It is important to include in the calculations a scatter in the concentration values. We will assume

THE SAME scatter for the three scenarios described above (MAX,MED,MIN). Intrinsic to the

stochastic process of halo formation, the concentration of individual haloes scatters around the

median c provided by the quantities cvir(M) and csub(M,Dgc), respectively. The corresponding

probability distribution follows a lognormal (see e.g. Ref. [1]):

P (c, c) =
log10 e√
2πσlog10 c c

exp

�
−1

2

�
log10 c− log10 c

σlog10 c

�2
�
, (4)

where σlog10 c = 0.14 [3, 5].

2.2 Subhalo mass function

2.3 Subhalo radial distribution

2.4 Other useful formulae

1. Distance cut for subhalo detectability: we will assume that we cannot detect subhalos

with J-factors smaller than R times (e.g. one tenth) the Draco J-factor JD. Then, the cut in

distance as a function of the subhalo mass is given by:

Dcut(M) ≈

�
M D2

D c(M)3 f(cD)2

R f(c)2 MD c3D
(5)

where f(c) = ln(1 + c)− c/(1 + c), and the subindex D refers to Draco. We will take DD = 80

kpc, MD = 8×10
8M⊙, cD = 19, R = 0.1. As for c(M), we should take the MAX case described

in previous sections in order to be safe in our distance cut. The safer cut would be the one

provided by the Aquarius subhalo concentration (as the corresponding formula gives us the

highest c amongst all the formulae that we have for c).

2.5 Tidal radius and disruption of halos

We’ll use the Roche criterium (see e.g. to estimate the tidal radius, rt of a subhalo with mass

Msub located at a distance Rsub from the Galactic Center [6]:

rt =

�
Msub

3 MMW (< Rsub)

�1/3

×Rsub (6)

3

6 The Dark Matter Annihilation Signal from Galactic Substructure: Predictions for GLAST

Fig. 3.— The annihilation luminosity boost factor due to sub-
structure below VL-II’s resolution limit versus subhalo mass, for
different subhalo mass functions. Top panel: Dependence on the
cutoff mass m0 for slope α = 2.0. Bottom panel: Dependence on
α for m0 = 10−6 M".

rvir/rs is given by

L̃(M, c) ∝ ρ2
sr

3
s ∝ M

c3

f(c)2
, (7)

where f(c) = ln(1 + c) − c/(1 + c). We use the
Bullock et al. (2001) concentration-mass relation for field
halos, albeit with a somewhat smaller value of the nor-
malization, K = 3.75 (as suggested by Kuhlen et al.
2005; Macciò et al. 2007). For the cosmology used in
the VL simulations and halos masses between 106 and
1010 M!, the c(M) relation is approximately c(M) ≈
18(M/108 M!)−0.06, which corresponds to L̃(M) ∝
M0.87, i.e. the annihilation luminosity scales almost
linearly with mass, in agreement with results from nu-
merical simulations (Stoehr et al. 2003; Diemand et al.
2007a). Note that in our numerical simulations we find
systematically higher subhalo concentrations closer to
the host halo center. This trend does not affect the mag-

nitude of the boost factor, but translates to a radial trend
in subhalo luminosity (see Section 3.1).

Eq. 6 is solved numerically using the boundary con-
dition B(m0) = 0. The resulting relation is plotted in
Fig. 3, for α = 2.0 and different values of m0 in the top
panel, and for m0 = 10−6 M! and different values of α
in the bottom panel. Overall we find relatively modest
boost factors on the order of a few, ranging up to ∼ 10
for the most massive subhalos. Generally more massive
halos have larger boost factors, simply because their sub-
halo population covers more of the total subhalo hierar-
chy. For the same reason, smaller values of m0 lead to
larger boost factors. For α < 2.0 B(M) has a weaker
mass dependence and is less sensitive to m0, since in this
case more massive halos are relatively more important.
Our results are in agreement with the analytic upper lim-
its of Strigari et al. (2007a) and the recent calculations
of Lavalle et al. (2008).

A fit to the cumulative subhalo mass function in our
simulations is consistent with α = 2 (Diemand et al.
2007a), which implies equal mass in subhalos per decade
of subhalo mass. However, fits to the differential mass
function tend to favor slightly shallower slopes of 1.8−1.9
(Stoehr et al. 2003; Madau et al. 2008), possibly because
they are more sensitive to the lower mass end, where res-
olution effects may artificially flatten the slope. In this
work we use α = 2.0 and m0 = 106 M! as our fiducial
model, but present results for a range of different α and
m0.

2.3. Central Flux Corrections

The host halo center is another area where our simu-
lation must be corrected to account for the artificially
low density caused by the finite numerical resolution
(Diemand et al. 2004b). Based on numerical convergence
studies (Diemand et al. 2005a) we believe that we can
trust the radial density profile of the VL-I host halo
down to rconv = 3.4×10−3r200 = 1.3 kpc (Diemand et al.
2007a), corresponding to about 10◦ from the center. The
higher mass resolution and improved time-step criterion
in VL-II results in a much smaller convergence radius of
rconv = 380 pc. The flux derived directly from the simu-
lated particles in VL-II will thus only underestimate the
true annihilation flux within the inner ∼ 2◦ from the
center. An additional uncertainty arises from the fact
that our purely collisionless DM simulation completely
neglect the effect of baryons. While this is not a prob-
lem for the signal from individual subhalos, which are
small enough that baryonic effects are likely negligible,
the central region of our host halo most likely would have
been affected by gas cooling, star formation, and stellar
dynamical processes. It is not immediately obvious how
such baryonic effects would alter the central DM distri-
bution. Adiabatic contraction (Blumenthal et al. 1986;
Gnedin et al. 2004a) would lead to a steepening of the
central DM density profile at scales of a few kpc and be-
low. A recent study of scaling relations in spiral galaxies,
however, seems to favor models of spiral galaxy formation
without adiabatic contraction, and suggests that clumpy
gas accretion might have reduced central DM densities
(Dutton et al. 2007). Stirring by a stellar bar could also
eject DM from the central regions (Weinberg & Katz
2007, and references therein). On much smaller scales
(central few pc), the presence of a supermassive black

Integration	
  down	
  to	
  the	
  minimum	
  predicted	
  halo	
  mass	
  ~10-­‐6	
  Msun.	
  
	
  

Current	
  simulations	
  “only”	
  resolve	
  subhalos	
  down	
  to	
  ~105	
  Msun.	
  
	
  

	
  à	
  Extrapolations	
  below	
  the	
  mass	
  resolution	
  needed.	
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  in	
  Aquarius	
  
α  =	
  -­‐2	
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5

Fig. 2.— Sub-substructure in four of VL-II’s most massive subhalos. Shown are projections of ρ2 for all particles within a subhalo’s
outer radius rsub. The dashed circle indicates the subhalo’s r1000. The clumpy sub-substructure boosts the total annihilation luminosity
of its host subhalo.

=
1

L̃(M)

∫ m1

m0

dN

dm
[1 + B(m)] L̃(m)dm. (5)

Here dN/dm is the sub-subhalo mass function, and the
integration extends from m0, the low mass cut-off of
the substructure hierarchy, to an upper limit of m1 =
min{106 M!, 0.1M}, such that only substructure below
VL-II’s resolution limit of ∼ 106 M! contribute. For
subhalos below 107 M! we cap the integration at 0.1M
under the assumption that efficient dynamical friction
would have lead to the tidal destruction of larger sub-
subhalos. For a power law substructure mass function

dN/dm = A/M(m/M)−α, Eq. 5 becomes

B(M) =
A

L̃(M)

∫ ln m1

ln m0

( m

M

)1−α
[1 + B(m)] L̃(m)dln m.

(6)
Motivated by our numerical simulations
(Diemand et al. 2004a, 2007a) and semi-analytic
studies (Zentner & Bullock 2003), we normalize the
sub-subhalo mass function by setting the mass fraction
in subclumps with masses 10−5 < m/M < 10−2 equal
to 10%.

For the determination of L̃(M) we have assumed an
NFW density profile, in which case the total annihilation
luminosity of a halo of mass M and concentration c =

Concentration	
  c	
  =	
  Rvir	
  /	
  rs	
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Two	
  approaches	
  taken	
  so	
  far:	
  
	
  

1)	
  Power-­‐law	
  extrapolations	
  below	
  the	
  resolution	
  limit.	
  

2)	
  Physically	
  motivated	
  c(M)	
  models	
  that	
  take	
  into	
  account	
  the	
  growth	
  of	
  structure	
  
in	
  the	
  Universe.	
  	
  

	
  à	
  tuned	
  to	
  match	
  simulations	
  above	
  resolution	
  limit.	
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How can we know about the concentration  
of  the smallest halos? 

Power-­‐law	
  extrapolations,	
  e.g.:	
  
Springel+08,	
  Zavala+10,	
  Pinzke+11,	
  

Gao+11,	
  Han+12	
  
	
  

Non	
  power-­‐law	
  extrapolations,	
  e.g.:	
  
Bullock+01,	
  Kuhlen+08,	
  Macció+08,	
  

Kamionkowski+10,	
  Pieri+11	
  
	
  

Large	
  impact	
  on	
  boost	
  factors!	
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What	
  does	
  ΛCDM	
  tell	
  us	
  about	
  c(M)	
  	
  
at	
  the	
  smallest	
  scales?	
  

•  Natal	
  concentrations	
  are	
  mainly	
  set	
  by	
  the	
  halo	
  formation	
  time.	
  	
  

•  Given	
  the	
  CDM	
  power	
  spectrum	
  ,	
  the	
  smallest	
  halos	
  typically	
  collapse	
  nearly	
  at	
  the	
  same	
  time:	
  

à	
  	
  Concentration	
  is	
  nearly	
  the	
  same	
  for	
  the	
  smallest	
  halos	
  over	
  a	
  wide	
  range	
  of	
  masses.	
  	
  

à  power-­‐law	
  c(M)	
  extrapolations	
  not	
  correct!	
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Figure 11. Dependence of halo concentration c on log σ−1 after
rescaling all the results of Bolshoi and MultiDark simulations to
z = 0. The plot shows a tight intrinsic correlation of C on σ′.

and

σ−1

0 = 1.047, σ−1

1 = 1.646, β = 7.386, x1 = 0.526. (22)

Accurate approximations for the rms density fluctua-
tion σ(M,a) for the cosmological parameters of the Bol-
shoi/MultiDark simulations are given in Klypin et al. (2010)
and for convenience are reproduced here:

σ(M,a) = D(a)
16.9 y0.41

1 + 1.102 y0.20 + 6.22 y0.333
, (23)

y ≡
[

M

1012h−1M#

]−1

.

Figure 10 shows the evolution of cmin and σ−1

min
with

“time” x, and presents the approximations given in eqs.(19-
20). The evolution is clearly related with the transition from
the matter dominated period (Ωm(a) ≈ 1, x < 0.3) to the
Λ-dominated one with x > 0.7. Approximations for the
halo concentration are presented in Figure 8 for some red-
shifts. The parameters A, b, c, d of the C(σ′) relation are de-
termined from the best fit to the concentration–σ(M) Bol-
shoi/MultiDark data at all redshifts.

Here is a step-by-step description how to estimate halo
concentration:

• For given mass M and a = 1/(1 + z) find x, D(a), and
σ(M,a) using eqs. (13, 12, 16 or 23)

• Use eq. (18) to find parameters B0 and B1.
• Use eqs. (15-16) to find σ′ and C
• Use eq. (14) to find halo concentration c(M, z).

We present the final results and approximations in two
different forms. Functions B0 and B1 can be used to find
values of C and σ′, which is effectively the same as rescal-
ing concentrations c(σ, x) measured in simulations to the

Figure 12. Halo mass–concentration relation of distinct halos at
different redshifts in the Bolshoi (open symbols) and MultiDark
(filled symbols) simulations is compared with analytical approxi-
mation eqs.(14-16 (curves)). The errors of the approximation are
less than a few percent.

same redshift z = 0. Figure 11 shows results of simulations
rescaled in this way. The U-shape of C(σ′) is clearly seen.
The C(σ′) function to some degree plays the same role for
concentrations as the function f(σ) for the mass function
in eqs.(3-4). It tells us that there is little evolution in the
dependence of concentration with mass once intrinsic scal-
ings (e.g., x instead of expansion parameter) are taken into
account.

Another way of showing the approximations is simply
plot eqs. (14-16) for different redshifts and compare the re-
sults with the median concentration - mass relation in our
simulations. This comparison is presented in Figure 12. It
shows that the errors of the approximation are just a few
percent for the whole span of masses and redshifts.

6 SUMMARY AND CONCLUSIONS

We study the halo concentrations in the ΛCDM cosmology,
from the present up to redshift ten, over a large range of
scales going from halos similar to those hosting dwarf galax-
ies to massive galaxy clusters, i.e. halo maximum circular
velocities ranging from 25 to 1800 km s−1 (about six orders
of magnitude in mass), using cosmological simulations with
high mass resolution over a large volume. The results pre-
sented in this paper are based on the Bolshoi, MultiDark,
and Millennium-I and II simulations. There is a good con-
sistency among the different simulation data sets despite
the different codes, numerical algorithms, and halo/subhalo
finders used in our analysis.

The approximations given here for the evolution of the
halo concentration constitute the state-of-the-art of our cur-
rent knowledge of this basic property of dark matter halos
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Figure 11. Dependence of halo concentration c on log σ−1 after
rescaling all the results of Bolshoi and MultiDark simulations to
z = 0. The plot shows a tight intrinsic correlation of C on σ′.

and
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1 = 1.646, β = 7.386, x1 = 0.526. (22)

Accurate approximations for the rms density fluctua-
tion σ(M,a) for the cosmological parameters of the Bol-
shoi/MultiDark simulations are given in Klypin et al. (2010)
and for convenience are reproduced here:

σ(M,a) = D(a)
16.9 y0.41

1 + 1.102 y0.20 + 6.22 y0.333
, (23)

y ≡
[

M

1012h−1M#

]−1

.

Figure 10 shows the evolution of cmin and σ−1

min
with

“time” x, and presents the approximations given in eqs.(19-
20). The evolution is clearly related with the transition from
the matter dominated period (Ωm(a) ≈ 1, x < 0.3) to the
Λ-dominated one with x > 0.7. Approximations for the
halo concentration are presented in Figure 8 for some red-
shifts. The parameters A, b, c, d of the C(σ′) relation are de-
termined from the best fit to the concentration–σ(M) Bol-
shoi/MultiDark data at all redshifts.

Here is a step-by-step description how to estimate halo
concentration:

• For given mass M and a = 1/(1 + z) find x, D(a), and
σ(M,a) using eqs. (13, 12, 16 or 23)

• Use eq. (18) to find parameters B0 and B1.
• Use eqs. (15-16) to find σ′ and C
• Use eq. (14) to find halo concentration c(M, z).

We present the final results and approximations in two
different forms. Functions B0 and B1 can be used to find
values of C and σ′, which is effectively the same as rescal-
ing concentrations c(σ, x) measured in simulations to the

Figure 12. Halo mass–concentration relation of distinct halos at
different redshifts in the Bolshoi (open symbols) and MultiDark
(filled symbols) simulations is compared with analytical approxi-
mation eqs.(14-16 (curves)). The errors of the approximation are
less than a few percent.

same redshift z = 0. Figure 11 shows results of simulations
rescaled in this way. The U-shape of C(σ′) is clearly seen.
The C(σ′) function to some degree plays the same role for
concentrations as the function f(σ) for the mass function
in eqs.(3-4). It tells us that there is little evolution in the
dependence of concentration with mass once intrinsic scal-
ings (e.g., x instead of expansion parameter) are taken into
account.

Another way of showing the approximations is simply
plot eqs. (14-16) for different redshifts and compare the re-
sults with the median concentration - mass relation in our
simulations. This comparison is presented in Figure 12. It
shows that the errors of the approximation are just a few
percent for the whole span of masses and redshifts.

6 SUMMARY AND CONCLUSIONS

We study the halo concentrations in the ΛCDM cosmology,
from the present up to redshift ten, over a large range of
scales going from halos similar to those hosting dwarf galax-
ies to massive galaxy clusters, i.e. halo maximum circular
velocities ranging from 25 to 1800 km s−1 (about six orders
of magnitude in mass), using cosmological simulations with
high mass resolution over a large volume. The results pre-
sented in this paper are based on the Bolshoi, MultiDark,
and Millennium-I and II simulations. There is a good con-
sistency among the different simulation data sets despite
the different codes, numerical algorithms, and halo/subhalo
finders used in our analysis.

The approximations given here for the evolution of the
halo concentration constitute the state-of-the-art of our cur-
rent knowledge of this basic property of dark matter halos
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•  ΛCDM substructure key component for planning gamma-ray search 

strategies: 

–  Some of them excellent targets. 

–  Boost to the DM annihilation signal expected. 

•  Substructure boosts factors: 

–  Very sensitive to extrapolations below the mass resolution. 

–  Specially relevant for clusters; moderate values <50. 

–  O(10) for MW-sized halos. 

•  Halo concentrations: 

–  P12 c(M) model in remarkable agreement with N-body 

simulations at all halo masses. 

–  Power-law extrapolations to low masses clearly ruled out. 



masc@stanford.edu	
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Supplementary Figure 4: Abundance and concentrations of subhalos vs. distance

from the galactic center. Top: The number density profile of subhalos (circles) is more
extended than the dark matter density profile ρ(r) (thick line). Their ratio turns out to be
roughly proportional to the enclosed mass M(< r), i.e. ρM(< r) (thin line) matches the
subhalo number density quite well. Only subhalos larger than Vmax = 3 km s−1 are included
here. Bottom: Subhalo concentrations (median and 68% range are shown) increase towards
the center, where the stronger tidal force remove more of the outer, low density parts from
the subhalos. To make sure their cV are resolved, only subhalos larger than Vmax = 5 km s−1

are used. The error bars indicate the statistical uncertainties in both panels.
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VL-­‐II	
  (Diemand+08)	
  

Subhalo	
  c(M)	
  is	
  actually	
  c(M,R)	
  	
  
àP12	
  boosts	
  are	
  a	
  lower	
  limit!	
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Figure 2: An extrapolation of the subhalo contribution to the total luminosity to masses far below the simulation’s

resolution limit. Depending on what one assumes for the concentration-mass relation, one can get very different total

substructure boost factors. Extrapolations from the high-mass behavior seen in simulations (red dashed) or assuming

a constant power law concentration-mass relationship (green) are unlikely to hold at masses below ∼ 1 M⊙ (visually

indicated with thin faint lines).

The expected substructure boost depends on the distance from the halo center, with

results from state of the art simulations implying very little (or no) boost at the Galac-

tic Center, possibly O(1) in the local neighborhood, and perhaps as large as 100 -

1000 for the total luminosity of a halo [44, 60, 91, 114, 135]. As a result a differ-

ent boost factor applies to spatially extended sources (Galactic DGRB, MW satellite

galaxies, dark subhalos) than for unresolved sources (distant halos, extra-galactic

DGRB), and similarly a gamma-ray boost factor may not be the same as those for

positron or anti-proton production [136]. Furthermore, if a significant fraction of the

mean density at a given radius is locked up in substructure, then properly accounting

for the substructure boost will actually lower the smooth density contribution to the

luminosity [114], further reducing the contrast between the outer regions of a halo

and its center. The total halo luminosity boost likely depends on the mass of the

halo, since numerical simulations indicate a roughly equal contribution from every

decade of substructure mass, and larger mass host halos contain more decades of

substructure mass [94].

(b) Substructure boosts depend sensitively on subhalo properties many orders of magni-

tude below the resolution limit of state of the art simulations.

One approach to estimating the full substructure boost is to stay as close as possible

to the results from ultra-high-resolution numerical simulations like Via Lactea II and

Aquarius, by fitting the luminosity boost from all subhalos with mass greater than

11

DM	
  annihilation	
  boost	
  factor	
  from	
  substructure	
  

Since	
  DM	
  annihila:on	
  signal	
  propor:onal	
  to	
  the	
  DM	
  density	
  squared	
  
à	
  Enhancement	
  of	
  the	
  DM	
  annihila:on	
  signal	
  expected	
  due	
  to	
  subhalos.	
  
	
  
Depending	
  on	
  the	
  extrapolations	
  below	
  the	
  mass	
  resolution	
  limit	
  in	
  simulations,	
  one	
  
may	
  get	
  completely	
  different	
  answers.	
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Figure 2: Density profiles of main halo and subhalos. Main panel: Profile of the
Milky Way halo (thick line) and of eight large subhalos (thin lines). The lower panel gives the
relative differences between the simulated main halo profile and a fitting formula with a core29

ρ(r) = ρs exp{−2/α [(r/rs)α − 1], with best fit parameters: α = 0.170, rs = 21.5 kpc, ρs = 1.73 ×
10−3 M" pc−3 (red curve) and one with a cusp20 ρ(r) = ρs(r/rs)−γ(r/rs + 1)−3+γ with a best fit
inner slope of γ = 1.24, rs = 28.1 kpc, ρs = 3.50 × 10−3 M" pc−3 (blue curve). The vertical dotted
line indicates the estimated convergence radius of 380 pc: simulated local densities are only lower
limits inside of 380 pc and they should be correct to within 10% outside this region. The cuspy
profile is a good fit to the inner halo, while the cored profile has a too shallow slope in the inner
few kpc, causing it to overestimate densities around 4 kpc and to underestimate them at all radii
smaller than 1 kpc. The simulated densities are higher than the best fit cored profile even at 80 pc,
where they are certainly underestimated due to numerical limitations. We find the same behavior
in the inner few kpc in all six snapshots we have analyzed so far between z=3 an z=0. The large
residuals in the outer halos on the other hand are transient features, they are different in every
snapshot. Inset: Rescaled host (thick line) and subhalo (thin lines) density profiles multiplied by
radius square to reduce the vertical range of the figure.
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Figure 22. Subhalo density profiles for nine different subhaloes in the Aq-A halo, simulated with varying resolution. The profiles show the bound mass only
and are drawn with thick lines for the radial range where convergence is expected, based on the criterion of Power et al. (2003). They are continued with thin
lines down to the scale 2ε. Vertical dashed lines mark the radii where the force law becomes Newtonian (2.8ε). The dot–dashed purple line in each panel is the
density profile of all the mass around the subhalo’s centre (i.e. including unbound mass). The thin black line shows a fit with the Einasto profile. The labels in
each panel give the maximum circular velocity, mass and distance d to halo centre for each subhalo. α is the shape parameter of the Einasto profile, which we
here allowed to vary freely in our fits.

this representation whether the Einasto fit is significantly better than
fits with other analytic functions, like the NFW or Moore profiles.

Further insight can be obtained by studying the local logarith-
mic slopes of the subhalo density profiles as a function of radius,
which we show in Fig. 23, obtained by finite differencing of the
measured density profiles. Again, we compare the differing resolu-
tions available for Aq-A, and plot the results as thick lines for radii
where we expect convergence according to Power et al. (2003),
continuing them with thin lines towards smaller scales. The conver-
gence criterion appears to work quite well and in most cases accu-
rately delineates a limit beyond which the profiles suddenly start to
become significantly flatter. At larger radii, the local slopes change
continuously and smoothly with radius. For several subhaloes, we
have direct evidence that for the local slope is significantly shal-
lower than −1.5 in the innermost converged bin, thereby ruling out
the Moore profile for at least some dark matter subhaloes. In one
case, we find convergence to a slope which is clearly shallower than
−1.2. As for main haloes, extrapolation of the shape of these curves
to smaller radii suggests that profiles that will become significantly
shallower before reaching an asymptotic inner slope, if one exists.
From these results it seems very unlikely that typical dark matter
subhaloes could have power-law cusps with slopes as steep as −1.2,
as recently suggested by Diemand et al. (2008).

Another way to arrive at a similar conclusion is not to consider the
numerically differentiated density profile, but rather the maximum
asymptotic inner slope

β(r) = 3[1 − ρ(r)/ρ(r)], (18)

which can be supported by the enclosed mass at a certain radius.
This quantity was introduced by Navarro et al. (2004). It requires
converged values for both the local density and the enclosed mass
at each radius r. This is a more stringent convergence requirement
than asking that the density alone be converged. Nevertheless, it
can provide a powerful lower limit on the profile slope in the inner
regions; there cannot possibly be a cusp steeper than ρ ∝ r−β since
there is simply not enough mass enclosed to support it. In Fig. 24,
we show β(r) as a function of radius for the same subhaloes as
before, using the same approach to mark the Power et al. (2003)
convergence radius. We see that this convergence criterion is not
conservative enough in some of cases, where the enclosed mass is
not fully converged for the last bin. The Power et al. (2003) criterion
was actually designed for this quantity, but it has only been tested
for main haloes, and it is not surprising that we find subhaloes to be
somewhat more demanding. Nevertheless, this figure reinforces our
earlier conclusion. For most of the subhaloes, a central dark matter
cusp as steep as the Moore profile can be safely excluded, and in a
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Figure 25. Quality of fits to subhalo density profiles, based on three different
two-parameter models, an NFW profile, a Moore profile and an Einasto
profile with α = 0.18. The circles show a measure for the mean deviation
per bin, Q, for 526 subhaloes in the main halo of the Aq-A-1 simulation.
The subhaloes considered contain between 20 000 and nearly ∼10 million
particles. The lines in different colours show averages in logarithmic mass
bins for each of the three profiles.

show results for Via Lactea II, as recently published by Diemand
et al. (2008) where a cut-off of 5 km s−1 was used. Interestingly,
our subhaloes are substantially more concentrated than those in Via
Lactea II for the same lower cut-off. The Via Lactea II subhaloes
are actually slightly less concentrated than our subhaloes selected
above 10 km s−1. However, the origin of this offset may well lie in
differences in the adopted cosmologies (Macciò, Dutton & van den
Bosch 2008).

6 SU M M A RY

In this paper, we have presented first results from the Aquar-
ius Project, a Virgo Consortium4 programme to carry out high-
resolution dark matter simulations of Milky Way sized haloes in
the "CDM cosmology. This project seeks clues to the formation of
galaxies and to the nature of the dark matter by designing strategies
for exploring the formation of our Galaxy and its luminous and
dark satellites, for searching for signals from dark matter annihila-
tion, and for designing experiments for the direct detection of dark
matter.

In our approach, we pay great attention to validating our numer-
ical results to careful convergence studies. In addition, we explore
possible uncertainties in predictions for the Milky Way resulting
from the scatter in properties between otherwise similar haloes.
Thus, we simulate not just one realization at ultrahigh resolution,
but rather a sample of (currently) six different haloes. Our ambition
is to redefine the state of the art in this field with respect to the
accuracy of the cosmological N-body simulations, and the rigour
with which quantitative statements about halo structure can be
made.

4 The Virgo Consortium is an international collaboration of astronomers
working on supercomputer simulations of cosmic structure formation, see
http://www.virgo.dur.ac.uk.
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Figure 26. Relation between rmax and Vmax for main haloes (top) and
subhaloes (bottom) in the Aq-A series of simulations. We compare results
for simulations of different resolution for this halo, and we use solid lines
to mark the mean of log rmax in each bin. The dashed red lines enclose
68 per cent of the distribution for the Aq-A-1 simulation. The solid line
is an extrapolation to smaller mass of the result of Neto et al. (2007) for
the haloes of the Millennium Simulation, while the dotted power law in the
lower panel is a fit to our results for subhaloes, lying a factor of 0.62 lower.

Our new simulation code GADGET-3, developed specifically for
the Aquarius Project, is a highly efficient, massively parallel N-
body code. It offers much better scalability to large numbers of
compute cores and a higher basic speed than its parent code GADGET-
2 (Springel 2005). It is able to cope efficiently with the tight coupling
of around 1.5 billion particles in a single non-linear object, split up
across 1024 CPUs. Some of our simulations at resolution level 2
were run on an even larger number of compute cores, using up
to 4096 cores of a Bluegene/P computer. Here we used a novel
feature in GADGET-3 that can exploit additional compute cores in
shared-memory nodes by means of threads (based on the POSIX
pthreads library) yielding a mix of distributed and shared memory
parallelism. The ability to simulate this high degree of clustering and
non-linearity on massively parallel architectures is a prerequisite for
exploiting the power of upcoming petaflop computers for the next
generation of high-precision simulations of cosmological structure
formation.
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Figure 27. Mean relation between subhalo mass as assigned by SUBFIND
and maximum halo circular velocity. The dashed red lines enclose 68 per cent
of the distribution around the mean (calculated as an average of log Msub)
for the Aq-A-1 simulation. The dotted line is a power-law fit, Msub !
3.37 × 107 (Vmax/10 km s−1)3.49, to the results of Aq-A-1.

The results presented above demonstrate that we have created a
remarkably accurate set of simulations, reaching very good conver-
gence for the dark matter density profile and the substructure mass
function over the maximum range that could be expected. Even the
location, mass and internal structure of individual large dark matter
subhaloes reproduce well between simulations of differing reso-
lution, a level of convergence which exceeds anything previously
reported in the literature.

The abundance of dark matter subhaloes is remarkably uniform
across our halo sample when normalized to parent halo mass, and
when considering subhaloes sufficiently small that fluctuations due
to counting statistics are unimportant. The differential subhalo mass
function is tilted to a slope slightly shallower than the critical value
−2, so that, even when extrapolated to arbitrarily small masses,
the total mass fraction in substructures remains small, less than
3 per cent within 100 kpc of halo centre, and less than 20 per cent
within r50 ∼ 400 kpc. Adopting the logarithmically divergent slope
−2 (which our results appear to exclude) does not increase these
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Figure 28. Subhalo characteristic density (which is a measure of concentration) as a function of maximum circular velocity (left-hand panel) and subhalo
mass (right-hand panel). We show results for all haloes in the r50 radius, as well as separately for the inner halo within 50 kpc, and for an outer shell
between 300 kpc and r50. The solid line in the left-hand panel gives an extrapolation of the result which Neto et al. (2007) quote for haloes in the Millennium
Simulation, while the dotted power law lies a factor of 2.6 higher and fits our results for the subhaloes within r50. The dotted line in the right-hand panel,
δV ! 5.80 × 108 (Msub/108 M%)−0.18, is a fit to our results for all subhaloes within r50.
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Figure 29. Subhalo concentration as a function of radius, for subhaloes
with maximum circular velocity larger than 2.5, 5 or 10 km s−1. The dotted
line is a fit to our result for the 5 km s−1 sample, which yields δV ! 3.77 ×
106 (r/kpc)−0.63. For comparison, we have also included the result quoted
recently by Diemand et al. (2008) for the Via Lactea II simulation, which
selected subhaloes with Vmax > 5 km s−1. Clearly, our subhaloes are more
concentrated than theirs at the same circular velocity, a difference that may
be due to differences in the adopted cosmologies (e.g. Macciò et al. 2008).

mass fractions by more than a factor of 2 or 3 for lower mass
limits in the range 10−6 to 10−12 M%, which plausibly correspond
to the thermal free-streaming limit if the dark matter is the lightest
sypersymmetric particle. The inner halo is dominated by a smoothly
distributed dark matter component, not by substructure.

Independent of their present mass, substructures have a strong
preference to be found in the outer regions of haloes. For example,
we estimate that at most a fraction of 10−3 of the dark matter at the
solar circle is in bound subclumps. The rest is smoothly distributed.
Note, however, that this smooth component is expected to have a
rich structure in velocity space, being composed of a large number
(perhaps 105 or more) of cold streams (Helmi, White & Springel
2003; Vogelsberger et al. 2008).

Contrary to previous claims, we find that substructure in sub-
haloes is not a scaled-down version of substructure in main haloes.
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Figure 5. Flux multiplier f (Mh > Mmin) for the main haloes in the MS-II
as a function of Mmin. The solid blue and dashed black lines are analogous to
the ones in Fig. 4. The solid black line is a theoretical estimate as described
in the text.

& Tormen (2001). The result is included in Fig. 5 with black solid
lines.

We see that these analytic estimates roughly agree with the actual
numerical results from the MS-II over the resolved mass range.
However, small differences in the slope of f (M > Mmin) at the
minimum resolved mass range (1.39–6.89×108 h−1 M#), produce
a large difference for the extrapolated values at the damping scale
limit, which amounts to a factor of up to 3–5. We note that for
redshifts z > 2.1, our extrapolation down to the cut-off mass is not
accurate any more and the obtained values are clearly overestimated.
This is a reflection of the difficulties to still reliably fit a power law
to F (M) at these high redshifts, where the population of haloes over
the resolved mass range becomes ever smaller.

Another interesting question that arises from this statistical anal-
ysis is which mass scale contributes most to the total flux of
gamma-rays coming from dark matter annihilations? The answer
is presented in Fig. 6, which shows the differential cumulative flux,
which is really just the logarithmic derivative of the cumulative flux
shown in Fig. 5, as a function of the minimum halo mass. From
the figure we see that less massive haloes contribute increasingly
more to the total gamma-ray flux coming from dark matter annihi-
lation. There is a clear change in behaviour for a given mass scale
Mmin ∼ 1014 h−1 M# at z = 0, going down to Mmin ∼ 1012 h−1 M#
at z = 2.1. Fig. 6 also reveals an artificial downturn for the min-
imum mass range resolved (1.39–6.89 × 108 h−1 M#). The ana-
lytical expectations, shown as black solid lines, qualitatively agree
with the results from the simulation. However, the quantitative dif-
ferences in the extrapolated region are large.

4.2 The effects of substructure

Substructures within CDM haloes produce a total gamma-ray lumi-
nosity which is dominant over the smooth halo component for an
external observer (e.g. Taylor & Silk 2003). Springel et al. (2008b)
showed that for a MW halo, substructures with masses larger than
105 M# within r200 emit as much as 76 per cent of the emission
of the smooth halo. Also, using their set of simulations of the same

Figure 6. Differential cumulative flux multiplier |df (Mh > Mmin)/
d log Mmin| as a function of minimum mass. The line styles and colours
are as in Fig. 5.

halo at different resolutions they extrapolated the contribution from
substructures down to masses of 10−6 M#, at which point they
found the total cumulative luminosity to be 232 times larger than
the contribution from the smooth halo component.

In this subsection, we analyse the contribution of substructures
to the gamma-ray flux of the main haloes using as a basis the
most massive haloes in the MS-II that contain significant resolved
subhaloes and are therefore suitable for such an analysis. To this end
we follow an analogous procedure to the one used in the previous
subsection.

Fig. 7 shows the rmax–Vmax relation for the population of sub-
haloes inside the 10 most massive clusters of the MS-II at z = 0,
the line styles and colours are the same as in Fig. 3. These clusters

Figure 7. Relation between rmax and Vmax for the subhaloes of the 10 most
massive clusters in the MS-II at z = 0. These main haloes have Vmax values
in the range ∼850–1250 km s−1. Line styles and colours are as in Fig. 3.
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We see that these analytic estimates roughly agree with the actual
numerical results from the MS-II over the resolved mass range.
However, small differences in the slope of f (M > Mmin) at the
minimum resolved mass range (1.39–6.89×108 h−1 M#), produce
a large difference for the extrapolated values at the damping scale
limit, which amounts to a factor of up to 3–5. We note that for
redshifts z > 2.1, our extrapolation down to the cut-off mass is not
accurate any more and the obtained values are clearly overestimated.
This is a reflection of the difficulties to still reliably fit a power law
to F (M) at these high redshifts, where the population of haloes over
the resolved mass range becomes ever smaller.

Another interesting question that arises from this statistical anal-
ysis is which mass scale contributes most to the total flux of
gamma-rays coming from dark matter annihilations? The answer
is presented in Fig. 6, which shows the differential cumulative flux,
which is really just the logarithmic derivative of the cumulative flux
shown in Fig. 5, as a function of the minimum halo mass. From
the figure we see that less massive haloes contribute increasingly
more to the total gamma-ray flux coming from dark matter annihi-
lation. There is a clear change in behaviour for a given mass scale
Mmin ∼ 1014 h−1 M# at z = 0, going down to Mmin ∼ 1012 h−1 M#
at z = 2.1. Fig. 6 also reveals an artificial downturn for the min-
imum mass range resolved (1.39–6.89 × 108 h−1 M#). The ana-
lytical expectations, shown as black solid lines, qualitatively agree
with the results from the simulation. However, the quantitative dif-
ferences in the extrapolated region are large.

4.2 The effects of substructure

Substructures within CDM haloes produce a total gamma-ray lumi-
nosity which is dominant over the smooth halo component for an
external observer (e.g. Taylor & Silk 2003). Springel et al. (2008b)
showed that for a MW halo, substructures with masses larger than
105 M# within r200 emit as much as 76 per cent of the emission
of the smooth halo. Also, using their set of simulations of the same
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halo at different resolutions they extrapolated the contribution from
substructures down to masses of 10−6 M#, at which point they
found the total cumulative luminosity to be 232 times larger than
the contribution from the smooth halo component.

In this subsection, we analyse the contribution of substructures
to the gamma-ray flux of the main haloes using as a basis the
most massive haloes in the MS-II that contain significant resolved
subhaloes and are therefore suitable for such an analysis. To this end
we follow an analogous procedure to the one used in the previous
subsection.

Fig. 7 shows the rmax–Vmax relation for the population of sub-
haloes inside the 10 most massive clusters of the MS-II at z = 0,
the line styles and colours are the same as in Fig. 3. These clusters

Figure 7. Relation between rmax and Vmax for the subhaloes of the 10 most
massive clusters in the MS-II at z = 0. These main haloes have Vmax values
in the range ∼850–1250 km s−1. Line styles and colours are as in Fig. 3.
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•  Semi-­‐analy:cal	
  treatment	
  presented	
  in	
  Kamionkowski+10	
  for	
  MW	
  sized	
  halos.	
  

à	
  Slight	
  modifica:on	
  to	
  extend	
  the	
  formalism	
  to	
  halos	
  of	
  different	
  masses	
  (MASC+11)	
  

•  Two	
  crucial	
  parameters:	
  

–  fs,	
  that	
  controls	
  the	
  amount	
  of	
  substructure.	
  

à Calibrated	
  using	
  VL-­‐II	
  simula:ons	
  above	
  the	
  resolu:on	
  limit.	
  

–  ρmax,	
  which	
  depends	
  on	
  the	
  natal	
  concentra:on	
  of	
  the	
  earliest	
  virialized	
  objects	
  

à  fixed	
  to	
  c	
  =	
  4	
  following	
  e.g.	
  Diemand+06	
  and	
  Zhao+09	
  findings	
  at	
  high	
  z.	
  

•  Radial	
  distribu:on	
  of	
  subhalos	
  from	
  VL-­‐II.	
  	
  

boost the DM annihilation flux considerably. The flux enhancement will be more important
for the most massive halos as they enclose more hierarchical levels of the structure formation.
Therefore, it becomes essential to quantify precisely the substructure boost when computing
the DM annihilation flux from galaxy clusters. In contrast, the effect will turn out to be
insignificant for dwarfs.

The effect of substructures on the DM annihilation flux has already been studied both
analytically (e.g., in Refs. [61, 98, 99]), and making use of state-of-the-art N-body cosmo-
logical simulations [100, 101], although the exact calculation of the substructure boost has
been challenging. It becomes quite difficult to calculate analytically the survival probabilities
of substructures within the host halos, while the most powerful N-body simulations fail to
simulate the sub-halo hierarchy below a mass ∼105M!, still very far from the minimum halo
mass predicted to be present in the structure formation scenario, of the order of 10−6M! or
even smaller [102].

Recently, Kamionkowski, Koushiappas, and Kuhlen developed in Ref. [26] a semi-
analytical model in order to include the substructure in the computation of the DM an-
nihilation flux (hereafter 3K10 model). Their model is based on a previous analytical study
that described the self-similar substructure expected from hierarchical clustering [103]. The
3K10 model makes an upgrade of this first work by performing a calibration to the Via Lactea
II N-body cosmological simulation [104]. After this calibration it is possible to use the model
to obtain a suitable extrapolation of the results of the simulation below its lower mass limit.
In addition, the 3K10 model includes a good description of the distribution of substructure
in the halo when varying the galactocentric radius. Both achievements make possible a more
realistic and precise computation of the substructure boost to the DM annihilation flux. The
3K10 model indicates that the lower mass halos will not contribute greatly to this boost.

In the 3K10 framework, the boost factor B(r) is given by:

B(r) = fse
∆2

+ (1− fs)
1 + α

1− α

[

(

ρmax

ρ(r)

)1−α

− 1

]

. (4.1)

where fs refers to the volume of the halo that is filled with a smooth dark matter component
with density ρ(r), while the fraction (1−fs) corresponds to a high-density clumped component
due to the presence of substructures. We chose ∆ = 0.2, α = 0 and ρmax = 80 GeV cm−3,
which are the values found when calibrating the 3K10 model to the VL-II simulation. We
refer the reader to Ref. [26] for a detailed description of each of these terms. Note that the
boost factor is indeed composed of two terms: a first term Bs = fse∆

2

due to the finite width
of the smooth component (that will have little importance here) and a second term due to
substructures.

We can also numerically evaluate the total boost from substructure within a radius R:

B(<R) =

∫ R
0

B(r) ρ2(r) r2 dr
∫ R
0
ρ2(r) r2 dr

. (4.2)

By applying the 3K10 methodology, we assume to be independent of the host halo mass
and the properties of the sub-halo population. The only uncertainty would come from the
parameters of the model, especially from fs, which is related to how effective tidal stripping
(or any other sub-halo destroying mechanism) is. In the 3K10 formalism, fs(r) was deter-
mined from VL-II, but the simulations are many orders of magnitude away from resolving
the whole sub-halo hierarchy, and therefore fs is not known with unlimited precision.
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Figure 5. Gamma-ray DM annihilation flux profiles, normalized to fSUSY , for Perseus, Coma, Ophi-
uchus, Virgo, Fornax, NGC5813, and NGC5846. The profiles were computed using those parameters
listed in table 6 for the DM density profiles and assuming a PSF=0.1◦. Substructure is included
here following the 3K10 model [26] using those parameters given in the text. From top to down
at Ψ0 = 1.2◦, the profiles correspond to Virgo, Fornax, Ophiuchus, Coma, Perseus, NGC5846, and
NGC5813.

On the other hand, our intention is to apply the 3K10 formalism to dwarf galaxies and
galaxy clusters and not only to MW-sized objects, so it is necessary to rescale fs(r) in order to
correctly accommodate it to halos of different sizes. We do so by replacing the ρ(r = 100 kpc)
parameter in eq.(4) of Ref. [26] by ρ(r = 3.56 × rs kpc), i.e.:

1− fs(r) = 7× 10−3

(

ρ(r)

ρ(r = 3.56 × rs kpc)

)−0.26

, (4.3)

as 3.56 is the ratio between the VL-II scale radius (rs = 28.1 kpc) and r = 100 kpc (value
extracted ad hoc from VL-II to properly calibrate the 3K10 model). Note that in doing so
we are assuming the same radial dependence of fs for all halo masses, only rescaling it to the
particular size of the new object.

In figure 5 we show the result of applying the 3K10 model to our sample of galaxy
clusters using the values given above for fs, ρmax, and α, as well as the new scaling relation
introduced in eq. (4.3). The substructure boost turns out to be extremely important in all
cases, its effect being relevant at all l.o.s. angles Ψ0. Note that the largest flux enhancements,
however, are achieved at the largest Ψ0 (compare with figure 4). Furthermore, Ophiuchus,
Perseus, and Coma are now at the same flux level as Fornax. The quantitative analysis is
summarized in table 8. Rank01 and Rank90 are now significantly altered with respect to
table 7. The total boost within the virial radius gives us an idea of the global importance of
substructure for each object: typical values of this boost for the most massive halos in the
sample are of the order of 50.

Yet, there are important observational consequences that arise when comparing tables 7
and 8: Jrs/JT rarely reaches values greater than 0.2 when including substructure, in contrast
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boost the DM annihilation flux considerably. The flux enhancement will be more important
for the most massive halos as they enclose more hierarchical levels of the structure formation.
Therefore, it becomes essential to quantify precisely the substructure boost when computing
the DM annihilation flux from galaxy clusters. In contrast, the effect will turn out to be
insignificant for dwarfs.

The effect of substructures on the DM annihilation flux has already been studied both
analytically (e.g., in Refs. [61, 98, 99]), and making use of state-of-the-art N-body cosmo-
logical simulations [100, 101], although the exact calculation of the substructure boost has
been challenging. It becomes quite difficult to calculate analytically the survival probabilities
of substructures within the host halos, while the most powerful N-body simulations fail to
simulate the sub-halo hierarchy below a mass ∼105M!, still very far from the minimum halo
mass predicted to be present in the structure formation scenario, of the order of 10−6M! or
even smaller [102].

Recently, Kamionkowski, Koushiappas, and Kuhlen developed in Ref. [26] a semi-
analytical model in order to include the substructure in the computation of the DM an-
nihilation flux (hereafter 3K10 model). Their model is based on a previous analytical study
that described the self-similar substructure expected from hierarchical clustering [103]. The
3K10 model makes an upgrade of this first work by performing a calibration to the Via Lactea
II N-body cosmological simulation [104]. After this calibration it is possible to use the model
to obtain a suitable extrapolation of the results of the simulation below its lower mass limit.
In addition, the 3K10 model includes a good description of the distribution of substructure
in the halo when varying the galactocentric radius. Both achievements make possible a more
realistic and precise computation of the substructure boost to the DM annihilation flux. The
3K10 model indicates that the lower mass halos will not contribute greatly to this boost.

In the 3K10 framework, the boost factor B(r) is given by:

B(r) = fse
∆2

+ (1− fs)
1 + α

1− α

[

(

ρmax

ρ(r)

)1−α

− 1

]

. (4.1)

where fs refers to the volume of the halo that is filled with a smooth dark matter component
with density ρ(r), while the fraction (1−fs) corresponds to a high-density clumped component
due to the presence of substructures. We chose ∆ = 0.2, α = 0 and ρmax = 80 GeV cm−3,
which are the values found when calibrating the 3K10 model to the VL-II simulation. We
refer the reader to Ref. [26] for a detailed description of each of these terms. Note that the
boost factor is indeed composed of two terms: a first term Bs = fse∆

2

due to the finite width
of the smooth component (that will have little importance here) and a second term due to
substructures.

We can also numerically evaluate the total boost from substructure within a radius R:

B(<R) =

∫ R
0

B(r) ρ2(r) r2 dr
∫ R
0
ρ2(r) r2 dr

. (4.2)

By applying the 3K10 methodology, we assume to be independent of the host halo mass
and the properties of the sub-halo population. The only uncertainty would come from the
parameters of the model, especially from fs, which is related to how effective tidal stripping
(or any other sub-halo destroying mechanism) is. In the 3K10 formalism, fs(r) was deter-
mined from VL-II, but the simulations are many orders of magnitude away from resolving
the whole sub-halo hierarchy, and therefore fs is not known with unlimited precision.
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here following the 3K10 model [26] using those parameters given in the text. From top to down
at Ψ0 = 1.2◦, the profiles correspond to Virgo, Fornax, Ophiuchus, Coma, Perseus, NGC5846, and
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On the other hand, our intention is to apply the 3K10 formalism to dwarf galaxies and
galaxy clusters and not only to MW-sized objects, so it is necessary to rescale fs(r) in order to
correctly accommodate it to halos of different sizes. We do so by replacing the ρ(r = 100 kpc)
parameter in eq.(4) of Ref. [26] by ρ(r = 3.56 × rs kpc), i.e.:

1− fs(r) = 7× 10−3

(

ρ(r)

ρ(r = 3.56 × rs kpc)

)−0.26

, (4.3)

as 3.56 is the ratio between the VL-II scale radius (rs = 28.1 kpc) and r = 100 kpc (value
extracted ad hoc from VL-II to properly calibrate the 3K10 model). Note that in doing so
we are assuming the same radial dependence of fs for all halo masses, only rescaling it to the
particular size of the new object.

In figure 5 we show the result of applying the 3K10 model to our sample of galaxy
clusters using the values given above for fs, ρmax, and α, as well as the new scaling relation
introduced in eq. (4.3). The substructure boost turns out to be extremely important in all
cases, its effect being relevant at all l.o.s. angles Ψ0. Note that the largest flux enhancements,
however, are achieved at the largest Ψ0 (compare with figure 4). Furthermore, Ophiuchus,
Perseus, and Coma are now at the same flux level as Fornax. The quantitative analysis is
summarized in table 8. Rank01 and Rank90 are now significantly altered with respect to
table 7. The total boost within the virial radius gives us an idea of the global importance of
substructure for each object: typical values of this boost for the most massive halos in the
sample are of the order of 50.

Yet, there are important observational consequences that arise when comparing tables 7
and 8: Jrs/JT rarely reaches values greater than 0.2 when including substructure, in contrast

– 17 –

!"##$%$&'"()*+,,-'* "&'$.%('$!*+,,-'*

#$%&'((")*+,-*"



•  B	
  ≈	
  1.1-­‐1.3	
  for	
  dwarf	
  galaxies	
  (vs	
  ≈	
  20	
  found	
  by	
  Pinzke+11)	
  

•  B	
  ≈15-­‐20	
  for	
  MW-­‐sized	
  halos	
  (vs	
  ≈	
  200	
  found	
  by	
  Springel+08).	
  

•  B	
  ≈	
  40-­‐50	
  for	
  galaxy	
  clusters	
  (vs	
  ≈	
  1300	
  found	
  by	
  Pinzke+11,	
  Gao+11,	
  Han+12).	
  

3K10 boosts 
[also based on well motivated c(M) extrapolations]  
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Figure 6. Left panel: Comparison of the DM annihilation flux profiles (normalized to fSUSY) for the
subsample of those three dwarfs and three clusters with the highest fluxes. Right panel: Same as left
panel but this time including substructure following the 3K10 model described in section 4.3.

5 DM annihilation flux predictions and detection prospects for IACTs

5.1 Galaxy clusters or dwarf galaxies?

In this section, we will compare the results previously obtained for dwarf galaxies with those
obtained for galaxy clusters with the aim of elucidating the best candidates for gamma-ray
DM searches. The result of the comparison is given in figure 6, where we show the case with
no substructure at all (left panel) and a second case where we included substructure, in both
dwarfs and clusters (right panel). For clarity, we do not use our whole sample of objects, but
just the sub-sample composed by those three dwarfs — Willman 1, Segue 1 and UMi-A —
and three clusters — Virgo, Fornax and Ophiuchus — with the highest fluxes.

In both panels, dwarf galaxies reach the highest flux levels at Ψ0 = 0◦, roughly an order
of magnitude larger than those expected from clusters. This therefore seems to favor dwarfs
against galaxy clusters, particularly for point-like based observational search strategies. How-
ever, note that galaxy clusters dominate the gamma-ray DM-induced emission at large angles
once substructure is properly taken into account. This happens at radii greater than ∼0.4◦

in all cases, fluxes remaining substantially higher than those expected from dwarfs and de-
creasing quite slowly up to very large radii, contrary to what happens in dwarfs. Actually,
once we include the effect of substructure, some of these galaxy clusters emit much more
DM annihilation flux in total than the best dwarf galaxies. For example Virgo, as can be
seen by comparing JT in tables 4 and 8, gives a flux larger than Willman 1 by a factor ∼13.
However, the main contribution to the total flux now comes from the outer regions, where the
flux level is comparatively quite low with respect to that reached in the very center. Thus,
if our search strategy can deal with quite extended sources (meaning ∼ 1 − 1.5◦, which, as
shown in table 8, is the typical value of ψ90, i.e., the typical size of the 90% emitting region),
then galaxy clusters probably are the best candidates or at least represent good competitors
to dwarfs.

5.2 J-values comparison with other works

Below we comment on the agreement/disagreement of our J-values with those found in some
works in the literature. We note that, when performing such a comparison, one has to be
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obtained for galaxy clusters with the aim of elucidating the best candidates for gamma-ray
DM searches. The result of the comparison is given in figure 6, where we show the case with
no substructure at all (left panel) and a second case where we included substructure, in both
dwarfs and clusters (right panel). For clarity, we do not use our whole sample of objects, but
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In both panels, dwarf galaxies reach the highest flux levels at Ψ0 = 0◦, roughly an order
of magnitude larger than those expected from clusters. This therefore seems to favor dwarfs
against galaxy clusters, particularly for point-like based observational search strategies. How-
ever, note that galaxy clusters dominate the gamma-ray DM-induced emission at large angles
once substructure is properly taken into account. This happens at radii greater than ∼0.4◦

in all cases, fluxes remaining substantially higher than those expected from dwarfs and de-
creasing quite slowly up to very large radii, contrary to what happens in dwarfs. Actually,
once we include the effect of substructure, some of these galaxy clusters emit much more
DM annihilation flux in total than the best dwarf galaxies. For example Virgo, as can be
seen by comparing JT in tables 4 and 8, gives a flux larger than Willman 1 by a factor ∼13.
However, the main contribution to the total flux now comes from the outer regions, where the
flux level is comparatively quite low with respect to that reached in the very center. Thus,
if our search strategy can deal with quite extended sources (meaning ∼ 1 − 1.5◦, which, as
shown in table 8, is the typical value of ψ90, i.e., the typical size of the 90% emitting region),
then galaxy clusters probably are the best candidates or at least represent good competitors
to dwarfs.

5.2 J-values comparison with other works

Below we comment on the agreement/disagreement of our J-values with those found in some
works in the literature. We note that, when performing such a comparison, one has to be
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Cluster B(< Rvir) Log10 JT ψ90 r90/rs J01/JT r01/rs ψrs Jrs/JT Rank01 Rank90
(GeV2cm−5) (deg) (deg)

Perseus 34.0 17.73 1.22 4.24 0.037 0.135 0.29 0.19 3 5
Coma 51.6 17.84 1.41 4.08 0.028 0.29 0.34 0.20 4 4
Ophiuchus 54.0 17.89 1.38 3.89 0.028 0.28 0.36 0.21 2 3
Virgo 55.0 19.11 7.29 4.55 0.004 0.06 1.61 0.18 1 1
Fornax 39.9 18.17 2.97 5.11 0.013 0.17 0.58 0.16 5 2
NGC5813 34.8 17.33 1.36 5.69 0.035 0.42 0.24 0.14 7 7
NGC5846 36.1 17.51 1.59 5.54 0.028 0.35 0.29 0.15 6 6

Table 8. Same as table 7 but now including substructure. B(< Rvir) is the total boost within the
virial radius of the object, as given by eq. (4.2). This table was computed assuming a PSF= 0.1◦.

with the typical values ∼0.9 found without substructure. This means that the gamma-ray
DM annihilation induced emission is indeed even less concentrated than previously thought,
the object being significantly more extended for IACTs. We note that this fact already has
important implications, e.g., on those conclusions achieved in Ref. [83] regarding DM searches
in Perseus with the MAGIC telescope, where the authors assumed that the majority of the
flux approximately comes from a region comparable with the telescope PSF and Jrs/JT = 0.9.
Other related quantities in table 8 where this same issue is clearly visible are J01/JT , which
surprisingly falls below 4% for all the considered objects, and r90/rs, now of the order of 4–5
in contrast to the previous factor ∼1. Indeed, table 8 shows that ψ90 is, in all cases, somewhat
greater than 1◦, clearly indicating the distinct extended nature of the gamma-ray emission.
Similar conclusions have also been obtained in recent works adopting different substructure
treatments [31, 105]. They found, however, much larger substructure boost factors (roughly
a factor 20 higher) than those given in our table 8.

For completeness, we also studied the effect of substructure on our sample of dwarf
galaxies, although, as mentioned, its importance is expected to be negligible for these objects.
Effectively, we found the following values for the total boost, as given by eq. (4.2), within the
tidal radius: 1.12, 1.12, 1.16, 1.16, 1.19, 1.31 for Segue 1, Willman 1, UMi-A, UMi-B, Draco-
cusp, and Draco-core respectively. The DM annihilation flux profiles are not significantly
affected by introducing substructure either, except marginally in the outer regions, where in
any case the level of the flux still remain extremely low.

4.4 γ-rays with a non-DM origin in clusters

When considering DM searches in galaxy clusters one has to carefully consider the possible
emission from other non-DM sources. In first place, some clusters contain bright active
galactic nuclei (AGN) [106] that may hinder the possible DM detection. These sources, while
often detected at Fermi-LAT energies [107], are not always observed in the GeV-TeV range.
This is due to the high-energy emission cut-off given by the decreasing inverse Compton
(IC) scattering efficiency in the Klein-Nishina regime. Moreover, in this sense, the AGN jet
inclination angle and the gamma-ray absorption in the source neighborhood also play an
important role. However, many AGN are proved to emit efficiently at very high energies
and, additionally, they typically show variable emission. Therefore, no general conclusions
on their impact on cluster DM searches can be drawn and their emission should be carefully
modeled in order to correctly derive implications for DM (see Ref. [37]). Alternatively, AGN
could be masked away as they are typically point-like objects for IACTs.

Another source of gamma-rays in clusters that can frustrate DM searches are cosmic
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Similar conclusions have also been obtained in recent works adopting different substructure
treatments [31, 105]. They found, however, much larger substructure boost factors (roughly
a factor 20 higher) than those given in our table 8.

For completeness, we also studied the effect of substructure on our sample of dwarf
galaxies, although, as mentioned, its importance is expected to be negligible for these objects.
Effectively, we found the following values for the total boost, as given by eq. (4.2), within the
tidal radius: 1.12, 1.12, 1.16, 1.16, 1.19, 1.31 for Segue 1, Willman 1, UMi-A, UMi-B, Draco-
cusp, and Draco-core respectively. The DM annihilation flux profiles are not significantly
affected by introducing substructure either, except marginally in the outer regions, where in
any case the level of the flux still remain extremely low.

4.4 γ-rays with a non-DM origin in clusters

When considering DM searches in galaxy clusters one has to carefully consider the possible
emission from other non-DM sources. In first place, some clusters contain bright active
galactic nuclei (AGN) [106] that may hinder the possible DM detection. These sources, while
often detected at Fermi-LAT energies [107], are not always observed in the GeV-TeV range.
This is due to the high-energy emission cut-off given by the decreasing inverse Compton
(IC) scattering efficiency in the Klein-Nishina regime. Moreover, in this sense, the AGN jet
inclination angle and the gamma-ray absorption in the source neighborhood also play an
important role. However, many AGN are proved to emit efficiently at very high energies
and, additionally, they typically show variable emission. Therefore, no general conclusions
on their impact on cluster DM searches can be drawn and their emission should be carefully
modeled in order to correctly derive implications for DM (see Ref. [37]). Alternatively, AGN
could be masked away as they are typically point-like objects for IACTs.

Another source of gamma-rays in clusters that can frustrate DM searches are cosmic
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Figure 1. Comparison of the different models used to calculate the enhancement of DM annihilation
signal due to structure formation; ∆2(z) based on the Millennium II simulation (MSII-models) [38]
and the semi-analytic model (BulSub) [23]. All the enhancement factors ∆2(z) are multiplied by the
factor (1 + z)3/h(z) in order to reflect the relevant part of the integrand in equation (2.1) we want to
illustrate.

gives significantly lower optical depth. For z ≥ 1 the difference to the older model [69] is large
for gamma-ray energies E0 � 20 GeV, and for higher energies the difference is even larger and
their deviation start at much lower redshifts. We show that the choice of absorption model
plays a role for the DM limits when the limits are set by the gamma-ray spectrum in the high
energy end of the Fermi-LAT measurement. We comment further on this in sections 3 and 5.

2.2 Galactic

In addition to an extragalactic DM signal, there could be a significant contribution from
pair annihilations along the line of sight through the DM halo in which the Milky Way
is embedded. Current N-body simulations show highly galactocentric smooth DM density
profiles, extending far beyond the visible Galaxy, and with the main halo hosting a large
amount of substructures in form of subhalos (which themselves contain subhalos) [19, 31].

The Galactic main halo’s DM density profile would by itself, from an observer on Earth,
give rise to a very anisotropic DM annihilation signal.3 The DM annihilation signal from the
Galactic substructures, however, has a completely different morphology and could potentially
produce a fully isotropic signal. This is because the flux is proportional to the number den-
sity distribution of subhalos, and this distribution is much less centrally concentrated than

3In [70] it was also argued that without, e.g., a substructure signal enhancements, the observation of the
inner degrees of the Milky Way is typically expected to always reveal a DM signal prior to a observed DM
gamma-ray signature in the IGRB measurment.
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could also receive a contribution from unresolved Galactic DM subhalos [31, 32]. We will
focus mainly on limiting the extragalactic DM signal in this work, but comment carefully on
the possible size of Galactic contributions. A different approach to extract a DM signal from a
full sky analysis, which we will not follow, is to analyze the power spectrum of the gamma-ray
signal, which may contain identifiable signatures on different angular scales [33–37].

There are several important uncertainties inherently present when trying to constrain
DM properties from the type of analysis presented in [30]. The largest comes from the the-
oretical modeling of the expected DM annihilation luminosity. We use recently presented
results from the ‘Millennium II’ simulation of cosmic structure formation [38, 39], as well
as the approach in the Fermi-LAT pre-launch study [40], to calculate the DM contribution
to the IGRB signal. Another uncertainty stems from the contribution of more conventional,
astrophysical sources to the extragalactic gamma-ray signal, which is currently hard to quan-
tify. A large contribution is believed to originate from unresolved point sources, with the
most important potentially being unresolved blazars [41–45]. Other sources, such as ordinary
star forming galaxies [46, 47] and in particular starburst galaxies [48], as well as structure
shocks in clusters of galaxies [49–53], might also contribute (see, e.g., [54] for a short review).
The Fermi-LAT is expected to improve our knowledge of these sources and increase our un-
derstanding of the shape and normalization of their contribution to the IGRB in the near
future (for early results, see [55]). We address these background uncertainties by presenting
both very conservative and more theoretically-motivated limits on the DM contribution to
the IGRB signal.

The paper is organized as follows. In section 2 we describe the calculation of the isotropic
gamma-ray flux from cosmological distant DM annihilations, and comment on the potential
contribution from Galactic DM. In section 3 we motivate and describe the particle physics
DM models we constrain. Section 4 contains a description of our procedure for obtaining the
limits, and in section 5 we present and discuss our results. Section 6 contains our summary.

2 Dark matter induced isotropic gamma-ray flux

2.1 Extragalactic

There are several ingredients necessary to calculate the flux of gamma-rays from cosmological
DM annihilation. In addition to the gamma-ray yield per annihilation, assumptions need to
be made on the distribution and evolution of DM halos in the Universe. Also, for high-energy
gamma-rays, the effects of intergalactic absorption become important and has to be taken
into account. The flux from DM induced extragalactic photons can be expressed as, [23],

dφγ

dE0
=

�σv�
8π

c

H0

ρ̄
2
0

m
2
DM

�
dz(1 + z)3

∆2(z)
h(z)

dNγ(E0(1 + z))
dE

e
−τ(z,E0)

, (2.1)

where c is the speed of light, H0 the Hubble constant equal to 100×h km s−1/Mpc, τ(z, E0) the
optical depth, �σv� the sample averaged DM annihilation cross section times relative velocity
(hereinafter referred to as cross section), dNγ/dE the gamma-ray spectrum at emission,
mDM the DM mass, and ρ̄0 its average density today, while h(z) =

�
ΩM (1 + z)3 + ΩΛ

parameterizes the energy content of the Universe. The quantity ∆2(z), as defined in [23],
describes the enhancement of the annihilation signal arising due to the clustering of DM into
halos and subhalos (relative to a uniform DM distribution in the Universe). For the ΩM ,
ΩΛ, and h we will consistently adopt the values used in [23] and [38]; which will be the two
references we follow in order to derive ∆2(z).
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halos and subhalos resolved in MS-II simulation (MSII-Res). As the other extreme, we

consider the most optimistic case, where subhalos and halos down to ∼ 10
−6M⊙ was taken

into account as to maximize the contribution of these smallest halos (MSII-Sub2). We also

consider a moderate case (MSII-Sub1), which we will adopt as our reference model, in which

the extrapolation of the contribution from structures and substructures down to ∼ 10
−6M⊙

has been done in a very conservative way.

As an alternative approach, we calculate ∆
2

using the same ‘semi-analytical’ procedure

as in [23]. Here the contribution from halos of all masses is integrated by using theoretically

motivated analytical functional forms on the relevant properties of the DM structure, which

in turn are tuned to fit results from numerical N-body simulations. The ingredients needed

are the redshift dependence on the halo mass function, the DM halo density profile, and

the spread in halo shapes for each halo mass. It is convenient to parametrize a halo by its

virial mass, M , and concentration parameter, c. The concentration parameter is treated as a

stochastic variable with a log-normal distribution for a fixed mass. Simplified, we can write

the quantity ∆
2
(z) as:

∆
2
(z) =

�
dM

dn

dM

�
dcP (c)

�ρ2
(M, c)�

�ρ(M, c)�2 (2.2)

where dn/dM is the halo mass function, with its functional form calculated as in the ellip-

soidal collapse model [65], and P (c) is a log-normal distribution with variance σ(log10 c) =

0.2 [23, 66]. We model the dependence of concentration parameter on halo mass and redshift

according to the Bullock et al. toy model [66]. We assume a NFW DM profile and fix the con-

centration parameter to stay constant for halo masses below 10
5M⊙, as it was done in [23], to

minimize the risk of overestimating the DM signal from extrapolation of the model of Bullock

et al. to low halo masses. Similarly to [23, 40], we set 10% of a halo mass in substructures

and assume that the subhalo mass function has a power-law behavior in mass M−β
, with a

slope β = 1.9. This is in broad agreement with findings of new simulations [31, 32] for Milky

Way-size halos. The concentration parameter of subhalos is not constant, but depends on

the subhalo mass [23] and on the distance from the center of the halos [31, 32]. We here

associate a concentration parameter four times higher in substructures, compared to a main

halo of the same mass [23]. This is the same type of structure description also used in the

Fermi pre-launch paper [40], and used in several recent works [64, 67]. We dub this scenario

the semi-analytical NFW Bullock et al. substructure model (BulSub).

The result of the semi-analytical (BulSub) approach lies between the extreme values

found in MS-II simulation, and turns out to be quite close to the MSII-Sub1 case. We show a

comparison of these four models via the quantity (1+z)
3
∆

2
(z)/h(z) in figure 1. The difference

in shape, at low redshifts, between the semi-analytical (BulSub) model and the MS-II results

comes mainly from different redshift evolution of the concentrations parameter and halo mass

function. To summarize, we note that all above scenarios could basically be related by an

overall shift in their predicted signal amplitudes. We will keep all of them, however, in our

exclusion plots as it is illustrative and allows easy comparisons with previous works.

For the optical depth τ(z, E0), as a function of redshift z and observed energy E0,

we use the result of Gilmore et al. [68].
2

In figure 2, we compare this result to the older,

commonly assumed, absorption model of Stecker et al. [69] by plotting the relevant part of the

integrand in equation (2.1): (1+z)
3
∆

2
(z)/h(z)exp(−τ). The newer absorption model in [68]

2We implemented the fiducial 1.2 model from [68].
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Figure 1. Comparison of the different models used to calculate the enhancement of DM annihilation
signal due to structure formation; ∆2(z) based on the Millennium II simulation (MSII-models) [38]
and the semi-analytic model (BulSub) [23]. All the enhancement factors ∆2(z) are multiplied by the
factor (1 + z)3/h(z) in order to reflect the relevant part of the integrand in equation (2.1) we want to
illustrate.

gives significantly lower optical depth. For z ≥ 1 the difference to the older model [69] is large
for gamma-ray energies E0 � 20 GeV, and for higher energies the difference is even larger and
their deviation start at much lower redshifts. We show that the choice of absorption model
plays a role for the DM limits when the limits are set by the gamma-ray spectrum in the high
energy end of the Fermi-LAT measurement. We comment further on this in sections 3 and 5.

2.2 Galactic

In addition to an extragalactic DM signal, there could be a significant contribution from
pair annihilations along the line of sight through the DM halo in which the Milky Way
is embedded. Current N-body simulations show highly galactocentric smooth DM density
profiles, extending far beyond the visible Galaxy, and with the main halo hosting a large
amount of substructures in form of subhalos (which themselves contain subhalos) [19, 31].

The Galactic main halo’s DM density profile would by itself, from an observer on Earth,
give rise to a very anisotropic DM annihilation signal.3 The DM annihilation signal from the
Galactic substructures, however, has a completely different morphology and could potentially
produce a fully isotropic signal. This is because the flux is proportional to the number den-
sity distribution of subhalos, and this distribution is much less centrally concentrated than

3In [70] it was also argued that without, e.g., a substructure signal enhancements, the observation of the
inner degrees of the Milky Way is typically expected to always reveal a DM signal prior to a observed DM
gamma-ray signature in the IGRB measurment.

– 5 –



800 x 600 kpc 

600 kpc depth 

10,000 subhalos 

110 million particles 

 

(Diemand et al. 2006) 

3-year WMAP cosmology. 
 
Initial z = 48.4. 
 
Mvir = 1.8 x 1012 Msun 
 
234 x 106 particles 
 (SUSY CDM) 
 
Each particle 2x104 Msun. 

 



The 4 most massive 
subhalos (~109 Msun) 

Sub-substructure 
clearly visible. 

 

 

 

 

 

 

(Diemand et al. 2006) 



Aquarius	
  –	
  VLII	
  comparison	
  

34	
  

3

In the case of Via Lactea II, the global subhalo mass
density profile ρsub(R) is best fitted by the so-called an-
tibiased relation [53, 64]:

ρV LII
sub (R) =

ρV LII
tot (R) (R/Ra)�

1 + R
Ra

� , (4)

Given the NFW overall profile ρV LII
tot (R), we see that the

subhalo distribution is cored below a scale radius Ra,
while it asymptotically tracks the smooth profile beyond.
The procedure to obtain this antibiased profile is detailed
in App. A, where it is shown that Ra is actually fixed by
the mass fraction in the form of subhalos.

For Aquarius, an Einasto shape is also found for the
spatial distribution of subhalos [54, 55], which leads to
the following global subhalo mass density profile:

ρAq
sub(R) = ρa exp

�
− 2

α

��
R

Ra

�α

− 1

��
, (5)

with α = 0.678, and where ρa ≡ kV M tot
sub =

kV f tot
sub MMW is fixed from the total subhalo mass (or

the mass fraction, equivalently) and the parameter kV ,
which normalizes the exponential term to unity within
the Galactic volume.

The normalized subhalo mass function used in both
subhalo distributions reads

F(µ,Msub) ≡ F0

�
Msub

M⊙

�−µ

, (6)

where F0, which carries units of inverse mass, allows
the normalization of the mass integral of F to unity
in the surveyed mass range. We will use µ = 2 in
the Via Lactea II configuration, and µ = 1.9 in the
Aquarius configuration.

Note that to get the subhalo number density from the
mass density, one can use the trivial following relation:

dNsh(Msub, R)

dMsub dV
=

1

�Msub�
dρsh(Msub, R)

dMsub
, (7)

where �Msub� ≡
�
dmmF(µ,m) = M tot

sub/Nsub is the
average subhalo mass. This relation is valid for any con-
figuration.

In the following, we will consider thatMmin = 10−6M⊙
and Mmax = 10−2Mh. The logarithmic mass slope µ is
steeper in the Via Lactea II configuration than in the
Aquarius configuration, which strongly increases the rel-
ative weight of the lightest subhalos to the total mass
(and therefore to the total annihilation rate) in the for-
mer case. All the parameters used for the above sub-
halo distributions are listed in Tab. I. They are set to
match the results of the corresponding N-body simula-
tions in the resolved subhalo mass ranges. In the case
of Via Lactea II, we impose that 10 % of the MW mass,
Mh, consists of virialized structures with masses in the
range [10−5Mh, 10−2Mh]. In the case of Aquarius, we re-
quire that 13.2 % of Mh is concentrated in subhalos with
masses in the range [1.8 × 10−8Mh, 10−2Mh]. The total
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FIG. 1. Mass density profiles of the MW halo components
for the Via Lactea II and Aquarius cases. For each setup,
the solid line represents the sum of all components, while the
dashed line is the smooth halo component and the dotted-
dashed line accounts for the subhalo component. The dotted
line exhibits the subhalo component when the tidal disruption
according to the Roche criterion is implemented.

mass fraction in the form of subhalos f tot
sub is then such

that:

f tot
sub Mh = M tot

sub ≡ 4π

� Rvir

0
dr r2

� Mmax

Mmin

dm
dρsh(m, r)

dm
.

(8)

Finally, we can now define the smooth dark matter com-
ponent for both configurations from the difference be-
tween the total and subhalo components:

ρsm(R) = ρtot(R)− ρsh(R) . (9)

We note that the MW mass in both simulations agrees,
within the errors, with the recent observational estimates
of [65] based on the so-called Timing Argument [66].
A word of caution is required for the subhalo distri-

bution near the GC (e.g. [67]). Since the subhalo num-
ber density at galactocentric distances of 8 kpc or less is
poorly constrained by numerical simulations, we calcu-
late this function by extrapolating the behavior at larger
distances. Tidal effects may disrupt subhalos in the cen-
tral regions of the Galaxy, which severely depletes the
subhalo population. To account for this effect we adopt
the Roche criterion [68]: a subhalo is destroyed when its
scale radius rs is larger than the tidal radius, i.e. the ra-
dius at which the tidal forces of the host potential equal

5

Via Lactea II Aquarius
αR 0.286 0.237
C1 119.75 232.15
C2 -85.16 -181.74
α1 0.012 0.0146
α2 0.0026 0.008

TABLE II. Parameters used for the fit to the concentration
parameter of subhalos.
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FIG. 3. Concentration parameter as a function of the halo
mass as found in Via Lactea II and Aquarius, computed at a
the virial radius Rvir and at the Earth-GC distance R = 8
kpc.

annihilate predominantly to bb̄. In order to maximize

the annihilation flux, we chose a light neutralino mass

mχ = 40 GeV.

Benchmark B is also representative of a class of

SUSY models. The DM particle mass is in this case

mχ = 100 GeV, thus allowing annihilation to W+W−
,

that is assumed to constitute the dominant annihilation

channel.

Benchmark C provides a ”minimal” solution to the

rising positron ratio measured by PAMELA, without at-

tempting to address higher energy (ATIC and Fermi)

data. The mass is in this case mχ = 100 GeV, thus

barely above the PAMELA energy range, and the lead-

ing annihilation channel e+e−.
Benchmark D, finally, represents a class of candi-

dates that attempt to explain the cosmic lepton data up

to TeV energies. We have adopted, as e.g. in Ref. [70],

mχ = 2000 GeV, and annihilation to τ+τ−.
We have used in all cases a thermal annihilation cross

section �σv� = 3× 10
−26

cm
3
s
−1

. The parameters of the

four benchmark models are summarized in Tab. III.

model mχ [GeV] final state
A 40 bb̄
B 100 W+W−

C 100 e+e−

D 2000 τ+τ−

TABLE III. Benchmark particle physics models. The annihi-
lation cross-section is �σv� = 3× 10−26 cm3 s−1.

IV. GAMMA-RAYS

The expected γ-ray flux from DM annihilation, Φγ , can

be factorized in two terms that depend on the properties

of the DM particle, ΦPP , and on their spatial distribution

along the line-of-sight, Φlos:

Φγ(mχ, Eγ ,M, r,∆Ω) = ΦPP (mχ, Eγ)× Φlos(M, r,∆Ω)

(12)

in units of inverse area and inverse time. Here mχ is the

DM particle mass, M the DM halo mass, r the position

inside the halo and ∆Ω represents the angular resolution

of the instrument (in the case of Fermi, for energies above

∼ 1GeV, one has ∆Ω ∼ 10
−5

sr).

The term ΦPP describes the number of photons yielded

in a single annihilation, and can be written as:

ΦPP (M,Eγ) =
1

4π

�σv�
2m2

χ

� mχ

Eγ

�

f

dNf
γ

dEγ
BfdEγ , (13)

Here f is the final state, Bf is the branching ratio,

and �σv� denotes the thermal annihilation cross section

which reproduces the observed cosmological abundance.

dNf
γ /dEγ is the differential annihilation photon spec-

trum that we take from [71].

The term Φlos represents the number of annihilation

events along the line-of-sight. It is obtained by integrat-

ing the square of the DM mass density:

Φlos(M, r,∆Ω) =

� �

∆Ω
dθdφ

�

los
dλ×

�
ρ2DM (M, c, r(λ, θ,φ))

λ2
J(x, y, z|λ, θ,φ)

�
(14)

Here J is the Jacobian determinant and c the concentra-
tion parameter. In the case of the smooth halo of the

MW, M = Mh and c is fixed by the output of N-body

simulations, while for the subhalos M = Msub and c is

a function of mass and position: c = c200(Msub, R), as

defined in Eq. (11). The integration has been performed

over a solid angle of 10
−5

sr.

The γ-ray annihilation flux receives contributions from

three different sources that we model separately:

• the DM smoothly distributed in the MW halo

• the DM within Galactic subhalos

• the DM in extragalactic halos and their substruc-

ture.
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4 Sánchez-Conde & Prada

as done in P12 and shown in the right panel of Fig. 1. In

such c – σ(M)
−1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (σ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (σ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

−0.5 � log[σ(M)]
−1 � 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

different redshifts, the model can be safely used to predict

concentration values of any simulation data whose σ(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5�

i=0

ci ×
�
ln

�
M200

h−1M⊙

��i

, (1)

where ci = [37.5153,−1.5093, 1.636 · 10−2, 3.66 · 10−4,
−2.89237 · 10−5, 5.32 · 10−7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
−6 < h−1M⊙ < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 � h−1M⊙ � 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in γ-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation γ-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in ΛCDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The effect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ∼10
5h−1M⊙, still very far from the

predicted halo cut-off mass, of the order of 10
−6h−1M⊙ or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L ∝ c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the ΛCDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

� M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4πMc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) − 1/(1 + c), and dN/dm =

A/M (m/M)
−α

is the subhalo mass function. Values for

α ranging between α = 1.9− 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for α = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of
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4 Sánchez-Conde & Prada

as done in P12 and shown in the right panel of Fig. 1. In

such c – σ(M)
−1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (σ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (σ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

−0.5 � log[σ(M)]
−1 � 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

different redshifts, the model can be safely used to predict

concentration values of any simulation data whose σ(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5�

i=0

ci ×
�
ln

�
M200

h−1M⊙

��i

, (1)

where ci = [37.5153,−1.5093, 1.636 · 10−2, 3.66 · 10−4,
−2.89237 · 10−5, 5.32 · 10−7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
−6 < h−1M⊙ < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 � h−1M⊙ � 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in γ-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation γ-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in ΛCDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The effect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ∼10
5h−1M⊙, still very far from the

predicted halo cut-off mass, of the order of 10
−6h−1M⊙ or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L ∝ c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the ΛCDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

� M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4πMc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) − 1/(1 + c), and dN/dm =

A/M (m/M)
−α

is the subhalo mass function. Values for

α ranging between α = 1.9− 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for α = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of

c� 2002 RAS, MNRAS 000, 1–??
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4 Sánchez-Conde & Prada

as done in P12 and shown in the right panel of Fig. 1. In

such c – σ(M)
−1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (σ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (σ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

−0.5 � log[σ(M)]
−1 � 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

different redshifts, the model can be safely used to predict

concentration values of any simulation data whose σ(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5�

i=0

ci ×
�
ln

�
M200

h−1M⊙

��i

, (1)

where ci = [37.5153,−1.5093, 1.636 · 10−2, 3.66 · 10−4,
−2.89237 · 10−5, 5.32 · 10−7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
−6 < h−1M⊙ < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 � h−1M⊙ � 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in γ-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation γ-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in ΛCDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The effect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ∼10
5h−1M⊙, still very far from the

predicted halo cut-off mass, of the order of 10
−6h−1M⊙ or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L ∝ c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the ΛCDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

� M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4πMc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) − 1/(1 + c), and dN/dm =

A/M (m/M)
−α

is the subhalo mass function. Values for

α ranging between α = 1.9− 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for α = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of
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as done in P12 and shown in the right panel of Fig. 1. In

such c – σ(M)
−1

plane, the P12 model adopts a character-

istic U-shape, with its minimum value corresponding to the

natal concentration of DM halos. We propose that halo evo-

lution tracks follow this U-shape from right to left, in such

a way that halos found to the right of the minimum (σ < 1)

are not formed yet, while halos located to the left already

have collapsed. This is supported by the fact that at the

high-mass end (σ < 1) the median halo kinematic profiles

show large signatures of infall and highly radial orbits (see

P12). As the P12 model was derived and tested between

−0.5 � log[σ(M)]
−1 � 0.5 (i.e., the range around the U-

shape minimum) by using Bolshoi and Multidark data at

different redshifts, the model can be safely used to predict

concentration values of any simulation data whose σ(M) val-

ues lie within that particular tested interval of the U-shape.

As shown in the right panel of Fig. 1, this is exactly the case

for all the simulation data set displayed in the left panel of

the same figure. Thus, no extrapolation of the P12 model

is done, which also explains its remarkable agreement with

simulations.

Finally, we provide a simple parametrization of the

concentration-mass relation provided by the P12 model at

z = 0, that will turn out to be very useful for the next sec-

tion, where we will compute the expected substructure halo

boosts to the dark matter annihilation signal:

c200(M200, z = 0) =

5�

i=0

ci ×
�
ln

�
M200

h−1M⊙

��i

, (1)

where ci = [37.5153,−1.5093, 1.636 · 10−2, 3.66 · 10−4,
−2.89237 · 10−5, 5.32 · 10−7

]. This parametrization, inspired

on the functional form proposed by Lavalle et al. (2008),

provides an accuracy better than 1% in the halo mass range

between 10
−6 < h−1M⊙ < 10

15
. It also captures the char-

acteristic c(M) upturn at higher masses found in Prada et

al. (2012). We note that, interestingly, the best fit to VL-II

(subhalo) concentrations found by Pieri et al. (2011) agrees

very well with Eq.(1) in the mass range well resolved in that

simulation, i.e. 10
5 � h−1M⊙ � 10

9
, desviations becoming

only relevant at lower and, very specially, higher masses.

4 HALO SUBSTRUCTURE BOOSTS TO THE
DARK MATTER ANNIHILATION SIGNAL

An important open question today is the role of DM sub-

structure in γ-ray DM searches. Indeed, DM substructure

might represent the key component in future DM search

strategies for several reasons. In particular, as the DM an-

nihilation γ-ray signal is proportional to the DM density

squared, the clumpy distribution of subhalos inside larger

halos expected in ΛCDM may boost the DM annihilation

flux considerably. This flux enhancement is more important

for the most massive halos as they enclose more hierarchical

levels of structure formation. The effect of substructures on

the DM annihilation flux (frequently known as substructure
boost) has already been studied both analytically, e.g., Pieri

et al. (2008); Lavalle et al. (2008); Mart́ınez et al. (2009), and

making use of N-body simulations, e.g., Kuhlen et al. (2008);

Springel et al. (2008). It is a challenge to calculate ana-

lytically the survival probabilities of substructures within

their host halos, while state-of-the-art N-body simulations

are computational prohibited to simulate the sub-halo hi-

erarchy below a mass ∼10
5h−1M⊙, still very far from the

predicted halo cut-off mass, of the order of 10
−6h−1M⊙ or

even smaller, e.g., (Green, Hofmann, & Schwarz 2004; Pro-

fumo et al. 2006).

Most popular substructure boost models (e.g., Pinzke

et al. (2011); Gao et al. (2011)) implicitly rely on power-

law extrapolations of the c(M) relation below the resolution

limit of N-body simulations all the way down to the min-

imum halo mass. Thus, these power-law extrapolations as-

sign very high concentrations to the smallest halos. As the

annihilation luminosity of a given halo scales as L ∝ c3,
the substructure boosts obtained in this way are usually

very large. Furthermore, the results are very sensitive to the

power-law index used in such extrapolations. However, as

already shown, these power-law extrapolations are not ex-

pected in the ΛCDM cosmology. Indeed, as small halos over

a broad range of masses collapse at nearly the same time in

the early Universe (given the shape of P (k)), and natal con-

centrations are set by the halo formation epoch, low-mass

halos possess rather similar natal concentrations, and thus

will also possess similar concentrations at the present time.

This fact translates in a flattening of c(M) at low masses,

which is evident in the left panel of Fig. 1. We remark that,

ultimately, natal halo concentrations are the key for this to

happen. In the following, we will calculate the substructure

boosts implied by the P12 model. We note that by doing

so we assume the P12 model to be also a good representa-

tion of subhalo concentrations. This is partially supported

by the fact that most subhalos at present time have been

accreted by their hosts at late times, up to 70% after z=0.5

according to some estimates, the latter being almost inde-

pendent of subhalo or parent halo mass (Gao et al. 2004).

Therefore, concentrations of field halos should be a fair es-

timate of those typical of subhalos of the same mass. Nev-

ertheless, subhalos are known to have slightly higher con-

centrations, the closer they lie from their host halo centers

the larger their concentrations, e.g., Diemand et al. (2008b).

Thus, overall, the P12 substructure boosts will represent a

lower limit to their actual values.

To compute the boosted annihilation luminosity of a

halo of mass M due to substructures, it is necessary to inte-

grate subhalo annihilation luminosities all the way down to

the minimum subhalo mass, Mmin. Since subhalos also host

sub-substructure, ideally, all levels of substructure should be

included. We define the boost B(M) as follows (Strigari et

al. 2007; Kuhlen et al. 2008):

B(M) =
1

L(M)

� M

Mmin

(dN/dm) [1 +B(m)] L(m) dm (2)

where L(M) = 4πMc3/f(c)2 is the halo annihilation

luminosity with no substructures, c being the concentra-

tion and f(c) = log(1 + c) − 1/(1 + c), and dN/dm =

A/M (m/M)
−α

is the subhalo mass function. Values for

α ranging between α = 1.9− 2 are possible (Diemand et al.

2007; Madau et al. 2008; Springel et al. 2008). The normal-

ization factor A is chosen to match the amount of substruc-

ture resolved in current simulations, and is equal to 0.XXX

and 0.XXX for α = 1.9 and 2, respectively. Note that fol-

lowing the definition of the boost in Eq. (2), an scenario

with no boost would be given by B = 0, while a value of
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