

CDM HALO CONCENTRATIONS AND [IMPLICATIONS FOR] DM ANNIHILATION SUBSTRUCTURE BOOSTS

Miguel A. Sánchez-Conde

[in collaboration with Francisco Prada]

2013 Santa Cruz Galaxy Formation workshop – August 14th 2013

GHALO simulation [Stadel+09]

luminous matter

GHALO simulation [Stadel+09]

Unobserved satellites

The role of DM substructure in γ-ray DM searches

Both *dwarfs* and *dark satellites* are highly DM-dominated systems

→ GOOD TARGETS

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

→ SUBSTRUCTURE BOOSTS

The role of DM substructure in γ-ray DM searches

Both *dwarfs* and *dark satellites* are highly DM-dominated systems

→ GOOD TARGETS

The *clumpy distribution* of subhalos inside larger halos may boost the annihilation signal importantly.

→ SUBSTRUCTURE BOOSTS

THIS TALK

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Substructure BOOST FACTOR: $L = L_{host} * [1+B]$, so $B=o \rightarrow no boost$ $B=1 \rightarrow L_{host} \times 2$ due to subhalos

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) \left[1 + B(m)\right] L(m) \ dm$$

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Substructure BOOST FACTOR: $L = L_{host} * [1+B]$, so $B=o \rightarrow no boost$ $B=1 \rightarrow L_{host} \times 2$ due to subhalos

Integration down to the minimum predicted halo mass ~10⁻⁶ Msun. Current simulations "only" resolve subhalos down to ~10⁵ Msun.

 \rightarrow Extrapolations below the mass resolution needed.

Subhalo mass function

$$dN/dm = A/M(m/M)^{-\alpha}$$
 $\alpha = -1.9$ in Aquarius $\alpha = -2$ in VL-II

Subhalo annihilation luminosity

J-factor
$$\propto \rho_s^2 r_s^3 \propto M \frac{c^3}{f(c)^2}$$
 with Concentration $c = R_{vir} / r_s$
 $f(c) = ln(1+c) - c/(1+c)$

 \rightarrow Results very sensitive to the c(M) extrapolations down to M_{min}

How can we know about the concentration of the smallest halos?

Two approaches taken so far:

1) Power-law extrapolations below the resolution limit.

2) Physically motivated c(M) models that take into account the growth of structure in the Universe.

 \rightarrow tuned to match simulations above resolution limit.

<u>Power-law extrapolations, e.g.:</u> Springel+o8, Zavala+10, Pinzke+11, Gao+11, Han+12

<u>Non power-law extrapolations, e.g.:</u> Bullock+01, Kuhlen+08, Macció+08, Kamionkowski+10, Pieri+11

Large impact on boost factors!

What does ΛCDM tell us about c(M) at the smallest scales?

- Natal concentrations are mainly set by the halo formation time.
- Given the CDM power spectrum , the smallest halos typically collapse *nearly* at the same time:
 - \rightarrow Concentration is nearly the same for the smallest halos over a wide range of masses.
 - → power-law c(M) extrapolations not correct!

Current knowledge of the c(M) relation at z=o

Concentration $c = R_{vir} / r_s$

c scales with mass and redshift (e.g., Bullock+01,Zhao+03,08; Maccio+08,Gao+08, Prada+12)

Current knowledge of the c(M) relation at z=o

Concentration $c = R_{vir} / r_s$

c scales with mass and redshift (e.g., Bullock+01,Zhao+03,08; Maccio+08,Gao+08, Prada+12)

No more simple power-law c(M) extrapolations

Our current knowledge of the c(M) relation from simulations also support the theoretical expectations.

[MASC & Prada, in prep.]

The U-shape plot

[Is the use of P12 below the mass resolution entirely justified?]

P12 links the concentration with the r.m.s. of the matter power spectrum.

All data sets but VL-II lie within the range tested by P12

 \rightarrow No extrapolations indeed

r.m.s. of the matter power spectrum

Substructure boosts

[fresh out of the oven!]

[MASC & Prada, in prep.]

Variation with ${\sf M}_{\sf min}$ and α

Comparison with previous boosts in the literature

O(1000) boost factors for galaxy clusters given by simple power-law c(M) extrapolations clearly ruled out.

SUMMARY

- ACDM substructure key component for planning gamma-ray search strategies:
 - Some of them excellent targets.
 - Boost to the DM annihilation signal expected.
- Substructure boosts factors:
 - Very sensitive to extrapolations below the mass resolution.
 - Specially relevant for clusters; moderate values <50.
 - O(10) for MW-sized halos.
- Halo concentrations:
 - P12 c(M) model in remarkable agreement with N-body simulations at all halo masses.
 - Power-law extrapolations to low masses clearly ruled out.

STAY TUNED masc@stanford.edu

ADDITIONAL MATERIAL

Subhalo c(M) is actually c(M,R) →P12 boosts are a lower limit!

Since DM annihilation signal proportional to the DM density squared → Enhancement of the DM annihilation signal expected due to subhalos.

Depending on the extrapolations below the mass resolution limit in simulations, one may get completely different answers.

22

Subhalo DM density profiles

Resolution effects in V_{max} and r_{max} in Aquarius

c-M power-law extrapolations?

Power-laws assign very high concentrations for the smallest halos:

→ As flux prop. c^3, very high substructure boosts expected (and very dependent on the extrapolation)

- Springel+o8 (Aquarius simulations) found B~200 for MW halos.
- Pinzke+11 and Gao+11 find B~1300 for clusters.
- Zavala+11 find B to be between 2 and 1821 for MW sized halos, depending on the extrapolation.

What does LCDM tell us about c(M)?

- Natal concentrations are mainly set by the collapse time.
- Assuming spherical collapse model: $\sigma(M)*D(z_c) = d_c$
- Given the shape of P(k) in CDM, the smallest halos collapse nearly at the same redshift:
 - → Concentration is nearly the same for the smallest halos!
 - \rightarrow c(M) flattening at low mass \rightarrow power-law extrapolations not correct!

3K10 substructure formalism

- Semi-analytical treatment presented in Kamionkowski+10 for MW sized halos.
 → Slight modification to extend the formalism to halos of different masses (MASC+11)
- Two crucial parameters:
 - **f**_s, that controls the amount of substructure.
 - \rightarrow Calibrated using VL-II simulations above the resolution limit.
 - ρ_{max} , which depends on the natal concentration of the earliest virialized objects
 - \rightarrow fixed to **c** = **4** following e.g. Diemand+06 and Zhao+09 findings at high z.
- Radial distribution of subhalos from VL-II.

DIFFERENTIAL BOOST

$$B(r) = f_s e^{\Delta^2} + (1 - f_s) \frac{1 + \alpha}{1 - \alpha} \left[\left(\frac{\rho_{max}}{\rho(r)} \right)^{1 - \alpha} - 1 \right]$$

$$1 - f_s(r) = 7 \times 10^{-3} \left(\frac{\rho(r)}{\rho(r = 3.56 \times r_s \text{ kpc})} \right)^{-0.26}$$
MASC+11 recipe

INTEGRATED BOOST

$$B(<\!R) = \frac{\int_0^R B(r) \,\rho^2(r) \,r^2 \,dr}{\int_0^R \rho^2(r) \,r^2 \,dr}$$

3K10 boosts

[also based on well motivated c(M) extrapolations]

- **B ≈ 1.1-1.3 for dwarf galaxies** (vs ≈ 20 found by Pinzke+11)
- **B ≈15-20 for MW**-sized halos (vs ≈ 200 found by Springel+08).
- **B ≈ 40-50 for galaxy clusters** (vs ≈ 1300 found by Pinzke+11, Gao+11, Han+12).

3K10 boost values

(based on well motivated c-M extrapolations)

Both approaches were used in Abdo+10 to bracket the uncertainties:

- Millenium II simulations, with power-law extrapolations to lower masses.
- Bullock+01 semi-analytical model for halo concentrations, which gives softer extrapolation.

Halo substructure and the IGRB

- DM halo evolution and halo substructure play a critical role in the determination of the contribution of DM annihilation to the IGRB.
- However, **very large uncertainties**! e.g.: 3 orders of magnitude uncertainty in the cross section was quoted in the Fermi-LAT paper on the interpretation of the IGRB in terms of DM.
- Working on this: results will be probably close to the "BullSub" model.

Abdo+10, JCAP 04, 014

3-year WMAP cosmology. Initial z = 48.4. Mvir = 1.8×10^{12} Msun 234 x 10⁶ particles (SUSY CDM) Each particle 2×10^4 Msun.

800 x 600 kpc600 kpc depth10,000 subhalos110 million particles

(Diemand et al. 2006)

The 4 most massive subhalos (~10⁹ Msun)

Sub-substructure clearly visible.

(Diemand et al. 2006)

Aquarius – VLII comparison

Pieri+o9

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Substructure BOOST FACTOR: $L = L_{host} * [1+B]$, so $B=o \rightarrow no boost$ $B=1 \rightarrow L_{host} \times 2$ due to subhalos

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) \left[1 + B(m)\right] L(m) dm$$

Subhalo luminosity

B(M) depends on the internal structure of the subhalos and their abundance

 \rightarrow N-body cosmological simulations

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Substructure BOOST FACTOR: $L = L_{host} * [1+B]$, so $B=o \rightarrow no boost$ $B=1 \rightarrow L_{host} \times 2$ due to subhalos

$$B(M) = \frac{1}{L(M)} \int_{M_{min}}^{M} (dN/dm) \underbrace{[1 + B(m)] \ L(m) \ dm}_{\text{Other levels of sub-substructure}} \text{Subhalo luminosity}$$

B(M) depends on the internal structure of the subhalos and their abundance

→ N-body cosmological simulations

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Substructure BOOST FACTOR: $L = L_{host} * [1+B]$, so $B=o \rightarrow no boost$ $B=1 \rightarrow L_{host} \times 2$ due to subhalos

 \rightarrow N-body cosmological simulations

Since DM annihilation signal is proportional to the DM density squared \rightarrow Enhancement of the DM annihilation signal expected due to subhalos.

Substructure BOOST FACTOR: $L = L_{host} * [1+B]$, so $B=o \rightarrow no boost$ $B=1 \rightarrow L_{host} \times 2$ due to subhalos

The DM picture at galactic scales

dark matter

luminous matter

Milky Way: $M_{stars} \sim 10^{11} M_{sun}$ $M_{total} \sim 10^{12} M_{sun}$ $R_{visible} \sim 30 \text{ kpc}$ $R_{vir} \sim 300 \text{ kpc}$

The DM halo is about 10 times larger in radius than the visible galaxy