The ELVIS Project: Exploring the Local Volume in Simulations

Shea Garrison-Kimmel UC Irvine

Diemand+2008

Diemand+2008

Diemand+2008

- Twenty-two paired halos in LG-like pairs
- Twenty-two mass-matched isolated analogues

- Twenty-two mass-matched isolated analogues
- Spans the suggested parameter space for the LG

- Twenty-two mass-matched isolated analogues
- Spans the suggested parameter space for the LG e.g., 1.02×10^{12} M_{sun} $\leq M_v \leq 2.86 \times 10^{12}$ M_{sun}

- Twenty-two mass-matched isolated analogues
- Spans the suggested parameter space for the LG
 - e.g., $1.02 \times 10^{12} \text{ M}_{sun} \le M_v \le 2.86 \times 10^{12} \text{ M}_{sun}$
- Reliably identify halos expected to host the ultrafaint dwarf satellites (M_{peak} = 6 x 10⁷ M_{sun})

- Twenty-two mass-matched isolated analogues
- Spans the suggested parameter space for the LG e.g., 1.02×10^{12} M_{sun} $\leq M_v \leq 2.86 \times 10^{12}$ M_{sun}
- Reliably identify halos expected to host the ultrafaint dwarf satellites (M_{peak} = 6 x 10⁷ M_{sun})
- Up to 15 million particles within R_v and up to 61 million within uncontaminated regions, which are as large as 43 Mpc³

Nearby Halo Counts

Nearby Halo Counts

Implications for AM

Implications for AM

Field Galaxy Counts

Backsplash Galaxies

Even at $2-2.5 \times R_v$, ~20% of field halos have previously passed within the virial radius of the host

Backsplash Galaxies

Even at $2-2.5 \times R_v$, ~20% of field halos have previously passed within the virial radius of the host

Local HI Mass Function

Local data agree well above incompleteness limit; predict only ~100 missing objects near the LG

Dynamics of Gas Rich Halos

Gas rich halos (i.e. those that have never passed within R_{ν}) are preferentially inflowing

Dynamics of Gas Rich Halos

Gas rich halos (i.e. those that have never passed within R_{ν}) are preferentially inflowing

Comparing Halo Structure

Populations agree, so we can combine them for better statistics

Work in progress!

Work in progress!

Work in progress!

Work in progress!

Counting "Massive Failures"

Work in progress!

~15-25 unaccounted for subhalos in each host, and all hosts have at least one "massive failure"

Summary of (some) ELVIS Results

- Halo counts: Paired/isolated samples agree within R_v, but LG hosts have ~80% more nearby field halos, which LSST, etc. will soon test
- Abundance matching: Flatter faint-end slope implied by MW/M31 satellites predicts ~1000 galaxies near the LG with M_{star} > 10³ M_{sun}
- Gas rich halos: Predict ~100 unfound gas-rich (non-backsplash) halos, which are preferentially inflowing (unlike many ALFALFA high-velocity clouds)
- Too Big To Fail: Requiring that each dense galaxy lives in only one subhalo results in ~15-25 "failures" per host, with a minimum of ~1-7

Ongoing ELVIS Projects

Counting dense field satellites around LG-like halos

- Finding planes of satellites to test the commonality of the plane recently identified around Andromeda (with Basilio Yniguez, Mike Boylan-Kolchin, and James Bullock)
- Constraints on WDM from the MW/M31 luminosity functions (Shunsaku Horiuchi and Jose Oñorbe)
- Effects of a disk on the substructure population of an MW-size halo (with Andrew Grauss and James Bullock)
- Ultrafaint Galaxy Luminosity Function under various dark matter models (Cassi Lochhaas and Annika Peter)

We will publicly release the data soon -contact us for early access!