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where � is a dimensionless constant that assumes the discrete values 0, 1,−1, α is
the gravitational coupling constant with dimensions of inverse squared mass, Lm

is the Lagrangian for the rest of the Universe components other than the scalar
field. Thus, the latter term will include only radiation and baryonic matter if the
scalar field is investigated as the constituent of both dark matter and dark energy,
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Fig. 13.— Joint two-dimensional marginalized constraint on the
linear evolution model of dark energy equation of state, w(a) =
w0 + wa(1 − a). The contours show the 68% and 95% CL
from WMAP+H0+SN (red), WMAP+BAO+H0+SN (blue), and
WMAP+BAO+H0+D∆t+SN (black), for a flat universe.

When Ωk != 0, limits on w significantly weaken, with
a tail extending to large negative values of w, unless su-
pernova data are added.
In Figure 12, we show that WMAP+BAO+H0

allows for w ! −2, which can be excluded
by adding information on the time-delay distance.
In both cases, the spatial curvature is well con-
strained: we find Ωk = −0.0125+0.0064

−0.0067 from

WMAP+BAO+H0, and −0.0111+0.0060
−0.0063 (68% CL) from

WMAP+BAO+H0+D∆t, whose errors are comparable
to that of the WMAP+BAO+H0 limit on Ωk with w =
−1, Ωk = −0.0023+0.0054

−0.0056 (68% CL; see Section 4.3).
However, w is poorly constrained: we find w =

−1.44 ± 0.27 from WMAP+BAO+H0, and −1.40 ±
0.25 (68% CL) from WMAP+BAO+H0+D∆t.
Among the data combinations that do not use the in-

formation on the growth of structure, the most powerful
combination for constraining Ωk and w simultaneously
is a combination of the WMAP data, BAO (or D∆t),
and supernovae, as WMAP+BAO (or D∆t) primarily
constrains Ωk, and WMAP+SN primarily constrains w.
With WMAP+BAO+SN, we find w = −0.999+0.057

−0.056 and
Ωk = −0.0057+0.0066

−0.0068 (68% CL). Note that the error
in the curvature is essentially the same as that from
WMAP+BAO+H0, while the error in w is ∼ 4 times
smaller.
Vikhlinin et al. (2009b) combined their cluster abun-

dance data with the 5-year WMAP+BAO+SN to find
w = −1.03 ± 0.06 (68% CL) for a curved universe.
Reid et al. (2010a) combined their LRG power spectrum
with the 5-year WMAP data and the Union supernova
data to find w = −0.99 ± 0.11 and Ωk = −0.0109 ±
0.0088 (68% CL). These results are in good agreement
with our 7-year WMAP+BAO+SN limit.

5.3. Time-dependent Equation of State

As for a time-dependent equation of state, we shall find
constraints on the present-day value of the equation of

state and its derivative using a linear form, w(a) = w0 +
wa(1−a) (Chevallier & Polarski 2001; Linder 2003). We
assume a flat universe, Ωk = 0. (For recent limits on w(a)
with Ωk != 0, see Wang 2009, and references therein.)
While we have constrained this model using the WMAP
distance prior in the 5-year analysis (see Section 5.4.2
of Komatsu et al. 2009a), in the 7-year analysis we shall
present the full Markov Chain Monte Carlo exploration
of this model.
For a time-dependent equation of state, one must be

careful about the treatment of perturbations in dark en-
ergy when w crosses−1. We use the “parametrized post-
Friedmann” (PPF) approach, implemented in the CAMB
code following Fang et al. (2008).32

In Figure 13, we show the 7-year con-
straints on w0 and wa from WMAP+H0+SN
(red), WMAP+BAO+H0+SN (blue), and
WMAP+BAO+H0+D∆t+SN (black). The angular
diameter distances measured from BAO and D∆t help
exclude models with large negative values of wa. We find
that the current data are consistent with a cosmological
constant, even when w is allowed to depend on time.
However, a large range of values of (w0, wa) are still
allowed by the data: we find

w0 = −0.93± 0.13 and wa = −0.41+0.72
−0.71 (68% CL),

from WMAP+BAO+H0+SN. When the time-delay dis-
tance information is added, the limits improve to w0 =
−0.93± 0.12 and wa = −0.38+0.66

−0.65 (68% CL).
Vikhlinin et al. (2009b) combined their cluster abun-

dance data with the 5-year WMAP+BAO+SN to find a
limit on a linear combination of the parameters, wa +
3.64(1 + w0) = 0.05 ± 0.17 (68% CL). Our data combi-
nation is sensitive to a different linear combination: we
find wa + 5.14(1 +w0) = −0.05± 0.32 (68% CL) for the
7-year WMAP+BAO+H0+SN combination.
The current data are consistent with a flat universe

dominated by a cosmological constant.

5.4. WMAP Normalization Prior

The growth of cosmological density fluctuations is
a powerful probe of dark energy, modified gravity,
and massive neutrinos. The WMAP data provide a
useful normalization of the cosmological perturbation
at the decoupling epoch, z = 1090. By compar-
ing this normalization with the amplitude of matter
density fluctuations in a low redshift universe, one
may distinguish between dark energy and modi-
fied gravity (Ishak et al. 2006; Koyama & Maartens
2006; Amarzguioui et al. 2006; Doré et al. 2007;
Linder & Cahn 2007; Upadhye 2007; Zhang et al.
2007; Yamamoto et al. 2007; Chiba & Takahashi 2007;
Bean et al. 2007; Hu & Sawicki 2007; Song et al. 2007;
Starobinsky 2007; Daniel et al. 2008; Jain & Zhang
2008; Bertschinger & Zukin 2008; Amin et al. 2008; Hu
2008) and determine the mass of neutrinos (Hu et al.
1998; Lesgourgues & Pastor 2006).
In Section 5.5 of Komatsu et al. (2009a), we provided

a “WMAP normalization prior,” which is a constraint

32 Zhao et al. (2005) used a multi-scalar-field model to treat w
crossing −1. The constraints on w0 and wa have been obtained
using this model and the previous years of WMAP data (Xia et al.
2006, 2008a; Zhao et al. 2007).
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Figure 5. The evolution of the B-band surface brightness profile
in the fiducial simulation.

of the disk was fit using stars with radii greater than 5 kpc.
These fits are represented by the dashed lines the same color
as the surface brightness profiles. Each exponential fit has a
scale length around 4 kpc and central surface brightnesses
around 21 in the B-band, slightly brighter than the Freeman
(1970) Law.

The fiducial simulation forms the right amount of stars
and has an exponential surface brightness profile that steep-
ens at 5 kpc to reach a central B surface brightness of
17 mag arcsec−2. By contrast, the simulations of g1536
without early stellar feedback each have exponential sur-
face brightness profiles with slightly longer scale lengths
but more extensive bulges. These bulges are characterized
by higher Sersic index components in their inner regions
that reach brighter central surface brightnesses than the
simulations with early stellar feedback. This high central
surface brightness is a common symptom of excess stellar
mass in the central galactic region found in many galaxy
simulations (Scannapieco et al. 2010; Stinson et al. 2010;
Scannapieco et al. 2012).

Figure 5 shows the evolution of the B surface brightness
profile in our fiducial model. It shows the disk growing from
the inside out. For the bulk of its evolution, the surface
brightness profile remains exponential. In the final two time
steps shown, an excess develops in the center. The scale
length of the disk undergoes an evolution from 1 kpc at
z = 2 to 4 kpc at z = 0.

To examine the underlying mass distribution of the
galaxy, Figure 6 shows the rotation curves, the circular ve-
locity, vc =

√

GM(r)/r, as a function of radius, for the same
galaxy models. The fiducial model has a nearly flat rotation
curve. The rotation curve for the MUGS g1536 has a large
central peak. The simulation without early stellar feedback
also exhibits a high central peak in its rotation curve. How-
ever, the simulation with 20% more supernova energy has a
much flatter rotation curve, though not as flat as the fiducial
model.

The simulations with too much feedback have slowly
rising rotation curves that are in conflict with the nearly
flat rotation curve observed for the Milky Way and other

Figure 6. Plot of vc =
√

GM(r)/r as a function of r for the all
the models of g1536 and g5664 at z = 0 modeled with varying
amounts of stellar feedback.

Figure 7. Plot of vc =
√

GM(r)/r as a function of r for the
simulated galaxy at z = 0. Each component, dark matter (solid
red), gas (green, dotted), and stars (light blue, dashed), is plotted
separately to show the matter distributions of each component.

L* galaxies (Courteau 1997; de Blok et al. 2008). We have
drawn sample model fits for the fiducial and high early stel-
lar feedback simulations following Reyes et al. (2011). They
useRTO values, radius at which the profile turns over, of 0.25
and 1 kpc, respectively. The slowly rising rotation curves
show the best agreement with the arctangent models used
in Reyes et al. (2011), where typical RTO values are approx-
imately the same as the disk scale length for galaxies with
stellar masses similar to g1536’s 2× 1010 M", which means
that the rotation curves do not reach their peak until well
beyond the disk scale length.

Even though the rotation curves slowly rise in the plot-
ted region, the peak of the rotation curve, 180 km s−1 is still
higher than the value of vvir, 110 km s−1. In other words,
the rotation curves turn over and decline outside the plotted
region.

c© 0000 RAS, MNRAS 000, 000–000
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mass in the central galactic region found in many galaxy
simulations (Scannapieco et al. 2010; Stinson et al. 2010;
Scannapieco et al. 2012).

Figure 5 shows the evolution of the B surface brightness
profile in our fiducial model. It shows the disk growing from
the inside out. For the bulk of its evolution, the surface
brightness profile remains exponential. In the final two time
steps shown, an excess develops in the center. The scale
length of the disk undergoes an evolution from 1 kpc at
z = 2 to 4 kpc at z = 0.

To examine the underlying mass distribution of the
galaxy, Figure 6 shows the rotation curves, the circular ve-
locity, vc =

√

GM(r)/r, as a function of radius, for the same
galaxy models. The fiducial model has a nearly flat rotation
curve. The rotation curve for the MUGS g1536 has a large
central peak. The simulation without early stellar feedback
also exhibits a high central peak in its rotation curve. How-
ever, the simulation with 20% more supernova energy has a
much flatter rotation curve, though not as flat as the fiducial
model.

The simulations with too much feedback have slowly
rising rotation curves that are in conflict with the nearly
flat rotation curve observed for the Milky Way and other

Figure 6. Plot of vc =
√

GM(r)/r as a function of r for the all
the models of g1536 and g5664 at z = 0 modeled with varying
amounts of stellar feedback.

Figure 7. Plot of vc =
√

GM(r)/r as a function of r for the
simulated galaxy at z = 0. Each component, dark matter (solid
red), gas (green, dotted), and stars (light blue, dashed), is plotted
separately to show the matter distributions of each component.

L* galaxies (Courteau 1997; de Blok et al. 2008). We have
drawn sample model fits for the fiducial and high early stel-
lar feedback simulations following Reyes et al. (2011). They
useRTO values, radius at which the profile turns over, of 0.25
and 1 kpc, respectively. The slowly rising rotation curves
show the best agreement with the arctangent models used
in Reyes et al. (2011), where typical RTO values are approx-
imately the same as the disk scale length for galaxies with
stellar masses similar to g1536’s 2× 1010 M", which means
that the rotation curves do not reach their peak until well
beyond the disk scale length.

Even though the rotation curves slowly rise in the plot-
ted region, the peak of the rotation curve, 180 km s−1 is still
higher than the value of vvir, 110 km s−1. In other words,
the rotation curves turn over and decline outside the plotted
region.
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playing with feedback
Stinson et al. 2012

same cosmology
different feedback

Mvir = 7x1011 Msun
z = 0

same feedback
different cosmology

playing with dark energy

z = 0Mvir = 8x1011 Msun



SUCDM ΛCDM waCDM2

Metal enrichment and gas cooling time

SUGRA starts 
with a bigger
potential well

more star formation

more metals

shorter
cooling time



conclusions

dark energy *does* matter
even on galactic scales

baryons enhance differences in dark energy models

feedback as key ingredient to make realistic galaxies,
but details in the feedback modelling
are as important as DE properties

Penzo et al. in prep


