Dark Halo Response in MaGICC Simulations

Aaron A. Dutton

Max Planck Institute for Astronomy (MPIA), Heidelberg, Germany

emperatur

Arianna Di Cintio, Chris Brook, Greg Stinson, Andrea Maccio, Alexander Knebe, James Wadsley

Santa Cruz Galaxy Workshop, August 12-16 2013

GOAL: Theoretical prediction for the structure of Dark Matter haloes

WHY should you care?

- 1) Constrain the Nature of Dark Matter using galaxy scale observations: i.e., dark matter density profiles.
- 2) Understand the Origin of Galaxy Scaling Relations: Tully-Fisher, Faber-Jackson, Fundamental Plane.

How does theory predict the structure of dark matter haloes?

Ingredients:

125 Mpc/h

- Nature of the Dark Matter (e.g., CDM, WDM, SIDM, ...)
 - Cosmological Parameters (e.g., σ_8 , n, Ω_m , ...)

Dissipationless (N-body) simulations

 Dark halo response to galaxy formation (e.g., contraction/expansion/no change)

Background: Millennium Simulation

Dissipationless simulations precisely predict the structure of DM haloes

Millennium (Springel et al. 2005); Via Lactea (Diemand et al. 2007); Aquarius (Springel et al. 2008); Bolshoi (Klypin et al. 2010).

Two predictions (Navarro, Frenk, White 1997)

1. Universal "cuspy" density profile

$$\frac{\rho(r)}{\rho_{\rm crit}} = \frac{\delta_{\rm c}}{(r/r_{\rm s})(1+r/r_{\rm s})^2}$$

2. Concentration mass relation

Maccio, Dutton, van den Bosch 2008

Background: Millennium Simulation

Q: How do dark matter haloes respond to galaxy formation?

Several physical process can modify the structure of DM haloes

Smooth and Slow Accretion: "Adiabatic Contraction"

- (r M(r) = const.) (Blumenthal et al. 1986, Barnes & White 1984)
- Order of magnitude increase in central density possible

Dynamical Friction: Expansion

- Satellite/clumpy accretion

(e.g., El-Zant et al. 2001; Johansson et al. 2009)

- Galactic bars

(Weinberg & Katz 2002)

Feedback: Expansion

- Strong mass outflows

(e.g., Navarro et al. 1996; Read & Gilmore 2005)

- Perturbations to potential

(e.g., Pontzen & Governato 2012)

Q: How do dark matter haloes respond to galaxy formation?

- A) They don't. Dissipationless
 simulations are all you need
- B) Contraction (roughly adiabatic)(Gnedin et al. 2004; 2011)
- **C)** Expansion

(Dutton et al. 2007; 2013)

D) All of the above, AND In a predictable way!

Two theoretical approaches

Analytic

(e.g., Mo & Mao 2004; Cole et al. 2011)

- + you can make realistic galaxies
- many simplifying approximations

Cosmological hydrodynamical simulations

(e.g., Gnedin et al. 2004; Abadi et al. 2010)

+ this is the problem we want to solve

- galaxies are usually not realistic (overcooling!)

+ MaGICC simulations make realistic galaxies

The MaGICC project @MPIA Making Galaxies In a Cosmological Context

GASOLINE (SPH) Metal line cooling UV background Star formation Super Nova +Early **Stellar Feedback**

(Stinson et al. 2013)

"state-of-the-art" simulations with hierarchical merging, gas cooling, star formation, stellar feedback, and high resolution

Solution: add more feedback

Chabrier instead of Kroupa IMF
 Increased efficiency (but still < 100%)

Looks good, but...

Evolution in Mstar/Mhalo is way off

stars form too quickly!

Stinson et al. 2013, MNRAS, 428, 1295

Solution: add more feedback

from stars before SN go off (<3 Myr)

Stinson et al. 2013, MNRAS, 428, 1295

The MaGICC Volume

stellar mass vs halo mass relation at z=2,3,4,5

512³ particles in (114 Mpc)³ volume **Rahul Kannan** et al. 2013 (astro-ph:1302.2618)

Other MaGICC projects

Dark MaGICC - the effect of dark energy on galaxy structures

Camilla Penzo - see next talk

 Warm MaGICC - the effects of Warm Dark Matter in hydrodynamical simulations of galaxy formation
 Jakob Herpich et al. 2013 astro-ph:1308.1088

Global Properties: Stellar mass vs Halo Mass

31 cosmological zoom-in simulations

Di Cintio et al. 2013, arXiv:1306.0898

Inner Dark Matter density slopes

Di Cintio et al. 2013, arXiv:1306.0898

What causes halo expansion?

Bursty star formation \Rightarrow feedback drives gas flows

 \Rightarrow rapid fluctuations in potential depth \Rightarrow halo expansion

(Pontzen & Governato 2012)

Time [Gyr]

MaGICC - Stinson et al. 2013

DM slope correlates with star formation efficiency

Competition: inflows (contraction) vs **outflows** (expansion)

Intermediate efficiency:

expansion wins

Di Cintio et al. 2013, arXiv:1306.0898

What mass scales are most effected?

Use abundance matching and TF relation

Di Cintio et al. 2013, arXiv:1306.0898

Characterizing dark halo response

Dutton et al. in prep

Characterizing dark halo response

Halo response is correlated with integrated star formation efficiency

Dutton et al. in prep

How do dark matter haloes respond to galaxy formation?

 Response is correlated with star formation efficiency (Di Cintio et al. 2013; Dutton et al. in prep)

\star contraction (steep cusps) at high efficiency $\epsilon_{SF} > 0.30$

 \star expansion (cores) at low efficiency ε_{SF} < 0.10

 \star no change (NFW) at very low efficiency M_{vir}/M_{star} > 10 000

$$\epsilon_{\text{SF}} = (M_{\text{star}} / M_{\text{vir}}) / (\Omega_{\text{b}} / \Omega_{\text{m}})$$