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Fig. 9. A direct comparison between our tetrahedral cell-projection approach (left) and a standard SPH adaptive kernel smoothing method. Artifacts
due to the poor density estimates in low-density regions are obvious for the SPH method, whereas the tetrahedral approach achieves an overall
high image quality, on small and large structures.
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A first glimpse: analyzing phase space

can probe
fine-grained
phase space
structure.
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Radial profiles reveal central density bias r
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Rough way to remove high density bias

Scale out bias using the 04 e e I
average relation | |
between SPH surface
densities and = 0.2
tetrahedral densities. &
Rough but so far good E’? 0.0
enough. = |

o i

~ _o0z2}

W s, s s,

log,0 Preu



Surface Density Maps

i

Figure 3. The surface density in units of the critical density, £(z)/E., in the central 0.6 x 0.6~ Mpc region about our WDM (top row) and
CDM clusters (bottom row), and for three different methods to estimate the density field. We use a logarithmic colour scale that identical
in all six sub-images, and ranges from 0.04 (dark blue) to 0.9 (white). This figure illustrates the different noise levels present in different
projection methods. Note how the method presented here, Recursive-TCM, displays the smallest amount of small-scale noise.
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Inverse Magnification

WDM

CDM

Figure 7. Map of the inverse of the magnification field, p~", at the central region of our WDM (top) and CDM {bottom). The region
displayed matches that shown in Fig. 3. White and black lines shows contours where p~1 = 0.6 and 0, respectively. Note we use the same

linear colour scale in all panels and it ranges from —0.18 (white) to 0.85 (light yellow]). 11



Subhalos and Inverse Magnification Contours
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Figure 8. The relation between substructure and perturbations in lensing magnification for our simulated CDM (left) and WDM (right)
halo. Black lines denote iso-magnification contours at gt =0.8,0.7,0.6,0.4,0.2 and 0 inwards. Red circles indicate the positions where sub-

structures were identified, and their radii is equal to the half-mass radius of the respective subhalo, Note the reduced number of substructures
in the WDM case, which result from the initial suppression of small-scale fluctuations.
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Lensing and the recursive deposit
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Figure 1. Projected dark matter density for the most massive DM halo in our simulations at z = 0 (Mggp = 4.38 x 104h~1Mg). Each
image corresponds to a square region of 3.05h~!Mpc a side 1.5~ Mpc deep. The left panel is the result of simulating this object in a WDM
scenario, whereas the right panel assumes a CDM cosmology. Note the similarities in the overall structure of the halo, and the differences on
small scales: in CDM the halo displays a large amount of substructure, whereas in \\DM these are absent and sharp caustics become more

visible.

Recursive Deposit
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Velocity measurements
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Reliable, converged velocity powerspectra.

Useful predominantly for theory. y



Some open questions

Modeling:
* Is there so much phase mixing that N-body Oi;l_
methods currently give the wrong answers? l.e. is mbmf
NFW a converged but incorrect answer? “‘g
e Finally can do bl
Lensing o | |
* With a noise free surface density estimator what 0'01 Cnwee

are the most interesting applications to lensing?
Strong, substructures, caustics, weak, what?

* Best way(s) to model galaxy contribution?

* Not only mass profile but also elipticity very
interesting to compare to numerical predictions.

e Substructure constraints. How good can this get?

* Mstar/Mnalo for individual objects on smaller masses?
How small?
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Summary

KIPAC
e Lagrangian Tesselation is extraordinarily useful
e spot errors in simulation

e velocity statistics
e improved density = improved potential = better accelerations

e reliable WDM simulations
* noiseless lensing predictions
e and many more applications ....

* |t Is also very simple to program

e Break unit cube into 6 tets once (Abel et al 2012)
o |nitital grid just replicates that N2 times
e Deposit 1/6 of particle mass at the centroid of the tetrahedron
* To make a noise less image: break tets recursively along their
longest side until they are smaller than a pixel (remembering that
divided tets have only half the mass of parent tet)
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