Bulge ART II

Introduction

- Simulation sample Generation 1 Generation 2 and 3
- Analysis
- Merger tree
- Bulge growth
- Origin of the bulg
- Summary

Bulge formation from z=4 to 1 Collaborators: Avishai Dekel, Adi Zolotov, Nir Mandelker, Daniel Ceverino, Joel Primack.

> Dylan Tweed dylan.tweed@googlemail.com

Racah Institute of Physics, HUJI, Jerusalem

UCSC Galaxy Formation Workshop - UCSC -August 12th – 16th 2013

Analysis of ART simulations.

Bulge ART II

Introduction

Simulation sample

Generation 1 Generation 2 and

Analysis

Merger tre

Bulge growt

Origin of the bulge

- AMR simulation hydro ART (Kratsov, Klypin), zoom-in simulations of high redshift galaxies.
 - ~ 33 (27 reach z=2) spatial with resolution 35-70 pc $\simeq 50$ pc.
 - ~ 30 (14 analyzed, 16 on the way) pairs with resolution 17-35 pc, $\simeq 25$ pc
- 2 Main focus:
 - VDI (N. Mandelker)
 - disc/bulge evolution (D. Tweed)
 - blue/red nuggets (A. Zolotov)
 - Inflow/outflow (H. House, M. Danovich)

DC's 1st generation simulation sample

Bulge ART II

Generation 1

#	Galaxy ID	Halo Mass [M _© /h]	Box Size [Mpc/h]	Status	a final	snapshot ∆a	#	Galaxy ID	Halo Mass [M _© /h]	Box Size [Mpc/h]	Status	a final	snapshot ∆a
1	MW01	1.07 10 ¹² (z=1)	20	Stopped.	0.42	0.01-0.02							
2	MW02	0.85 10 ¹² (z=1)	20	Stopped.	0.34	0.02	22	VL01	1.40 10 ¹² (z=1)	40	Complete.	0.37	0.01
3	MW03	1.35 10 ¹² (z=1)	20	Stopped.	0.42	0.01-0.02	23	VL02	1.40 10 ¹² (z=1)	40	Complete.	0.50	0.01
4	MW04	2.81 10 ¹² (z=1.1)	40	Stopped.	0.38	0.01-0.02	24	<u>VL03</u>	1.43 10 ¹² (z=1)	40	Complete.	0.33	0.01
5	MW05	7.26 10 ¹² (z=1)	80	Stopped.	0.25	0.01	25	VL04	1.44 10 ¹² (z=1)	40	Complete.	0.42	0.01
6			40	Complete.		0.01	26	<u>VL05</u>	1.40 10 ¹² (z=1)	40	Complete.	0.41	0.01
7	MW07	1.19 10 ¹² (z=0)	40	Stopped.	0.40	0.01	27	<u>VL06</u>	1.41 10 ¹² (z=1)	40	Complete.	0.50	0.01
8	MW08	0.99 10 ¹² (z=0)	40	Stopped.	0.45	0.01				80	Complete.	0.34	0.01
9	MW09	0.77 10 ¹² (z=0)	40	Complete.	0.5	0.01	29	<u>VL08</u>	1.86 10 ¹² (z=1)	80	Stopped.	0.46	0.01
10	MW10 [†]	1.07 10 ¹² (z=1)	20	Complete.	0.5	0.01	30	VL09	1.81 10 ¹² (z=1)	80	Stopped.	0.34	0.01
11	MW11 [†]	1.00 10 ¹² (z=1)	20	Stopped.	0.4	0.01			1.81 10 ¹² (z=1)	80	Complete.	0.50	0.01
12	MW12 [†]	1.18 10 ¹² (z=1)	40	Stopped.	0.39	0.01	32	VL11	1.85 10 ¹² (z=1)	80	Complete.	0.50	0.01
							33	VL12	1.83 10 ¹² (z=1)	80	Complete.	0.50	0.01
13	SFG1	2.31 10 ¹² (z=1)	40	Stopped.	0.38	0.01							
14	SFG2	1.24 10 ¹³ (z=1)	80	Stopped.	0.22	0.005							
15	SFG3	0.075 10 ¹³ (z=1)	80	Stopped.	0.075	0.005		Resolution: 35-70 pc					
16	SFG4	2.30 10 ¹² (z=1)	40	Stopped.	0.38	0.01							
17	SFG5	2.33 10 ¹² (z=1)	40	Stopped.	0.40	0.01							
18	SFG6	1.56 10 ¹³ (z=1)	80	Stopped.	0.09	0.005		 Thermal feedback 					
19	SFG7	1.12 10 ¹³ (z=1)	80	Stopped.	0.22	0.005							

0.35

0.005

0.486 0.005

Stopped.

Stopped.

80

80

4.61 10¹² (z=1)

3.62 10¹² (z=1)

20 SFG8

21 SFG9

DC's 2nd and 3rd generation simulation sample

Bulge ART II

Introduction

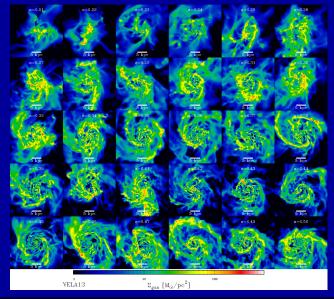
A	

Analysis

Merger tree

Bulge growth

Origin of the bul


#	Galaxy ID	Halo Mass [M _O /h]	Box Size [Mpc/h]	Status	a final	snapshot ∆a
1	VELA01	4.74 10 ¹¹ (z=1)	10	Complete.	0.50	0.01
2	VELA02	3.75 10 ¹¹ (z=1)	10	Complete.	0.50	0.01
3	VELA03	3.17 10 ¹¹ (z=1)	10	Complete.	0.50	0.01
5	VELA05	1.69 10 ¹¹ (z=1)	10	Complete.	0.50	0.01
6	VELA06	1.19 10 ¹² (z=0.8)	40	Running.	0.30	0.01
7	VELA07	1.00 10 ¹² (z=0.8)	40	Running.	0.35	0.01
8	VELA11	6.30 10 ¹¹ (z=0.8)	40	Complete.	0.50	0.01
9	VELA12	5.11 10 ¹¹ (z=0.8)	40	Complete.	0.50	0.01
10	VELA13	2.79 10 ¹¹ (z=0.8)	40	Complete.	0.40	0.01
11	VELA14	3.15 10 ¹¹ (z=0.8)	40	Running.	0.37	0.01
12	VELA15	2.29 10 ¹¹ (z=0.8)	40	Complete.	0.50	0.01
		4.74 10 ¹¹ (z=1)	10	Complete.	_	0.01
		3.75 10 ¹¹ (z=1)	10	Complete.	0.50	0.01
3b	VELA_v2_03	3.17 10 ¹¹ (z=1)	10	Complete.	0.50	0.01
4b	VELA_v2_04	1.91 10 ¹¹ (z=1)	10	Complete.	0.50	0.01
		1.69 10 ¹¹ (z=1)	10	Complete.	0.50	0.01
6b	VELA_v2_06	1.19 10 ¹² (z=0.8)	40	Running.	0.28	0.01
7Ь	VELA_v2_07	1.00 10 ¹² (z=0.8)	40	Running.	0.30	0.01
8b	VELA_v2_11	6.30 10 ¹¹ (z=0.8)	40	Complete.	0.50	0.01
9b	VELA_v2_12	5.11 10 ¹¹ (z=0.8)	40	Complete.	0.50	0.01
10b	VELA_v2_13	2.79 10 ¹¹ (z=0.8)	40	Complete.	0.40	0.01
11b	VELA_v2_14	3.15 10 ¹¹ (z=0.8)	40	Running.	0.37	0.01
12b	VELA_v2_15	2.29 10 ¹¹ (z=0.8)	40	Complete.	0.50	0.01

- Resolution: 17-35 pc
- Improved star formation recipe
- Feedback
- Generation 2: Thermal feedback
- Generation 3: Radiative feedback

Gas mosaics

Bulge ART II

- Introduction
- Simulation sample Generation 1 Generation 2 and 3
- . . .
- Merger tree
- Bulge growth
- Origin of the bulg
- Summary

Gas mosaics

Bulge ART II

Introductior

- Simulation sample Generation 1 Generation 2 and 3
- _____
- Analysis
- Merger tree
- Bulge growt
- Origin of the bulg
- Summary

Pipeline

Bulge ART II

Introduction

Simulation sample Generation 1 Generation 2 and 3

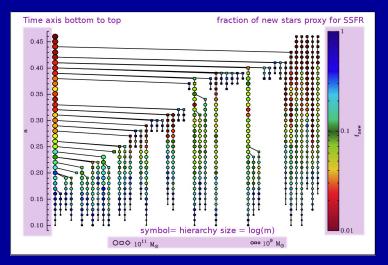
Analysis

- Merger tree Bulge growth
- Summary

- Group finding on stellar component with AdaptaHOP: Galaxies, clumps.
- 2 Stellar Merger trees: stars used as tracer particles.
- Clump extraction:
 - In-situ: VDI
 - Ex-situ: Mergers/interactions
- Analysis:
 - Galaxy properties
 - Galaxy evolution
 - Origin of the stellar population
 - Age Metallicity relation

Visualisation

Bulge ART II


Introduction

Simulation sample Generation 1

Analysis

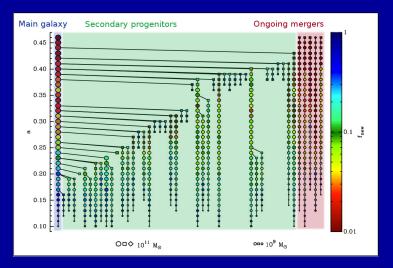
Merger tree

- Bulge growth
- Origin of the bulg

Visualisation

Bulge ART II

Introduction


Simulation sample Generation 1 Generation 2 and 3

Analysis

Merger tree

Bulge growth

Origin of the bu

Question

Bulge ART II

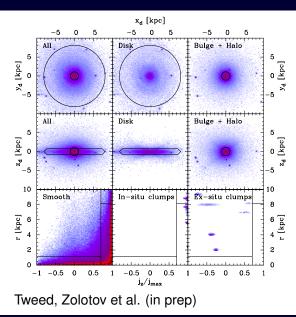
Introduction

Simulation sample Generation 1 Generation 2 and 3

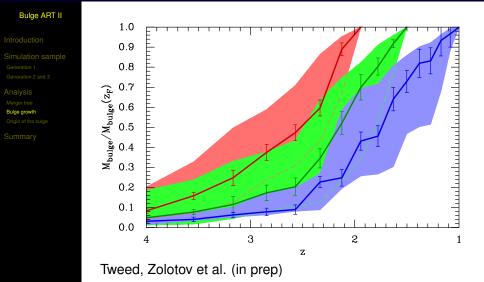
Analysis

Merger tree

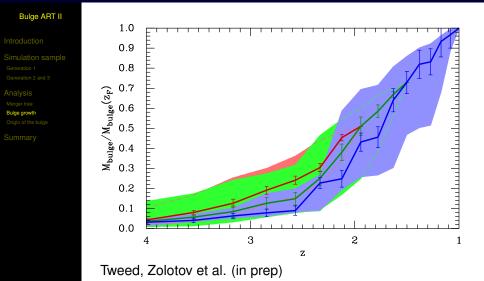
- Bulge growth Origin of the bulg
- Summary


- How is the stellar bulge built up? (Tweed, Zolotov et al. in prep)
 - We can track the whole galaxy in time.
 - Let's divide the galaxy as 3 kinematic components. Disc, Bulge, Halo

Decomposition



ntroduction


- Simulation sample Generation 1 Generation 2 and 3
- Analysis Merger tree Bulge growth
- Summary

Mass growth of the bulges

Mass growth of the bulges

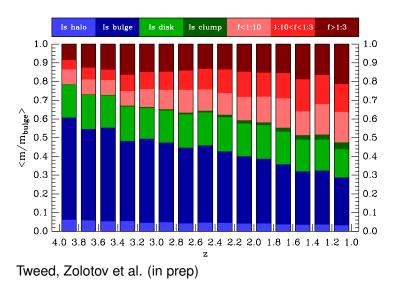
Back to the question

Bulge ART II

Introduction

- Simulation sample Generation 1
- Generation 2 and 3
- Analysis
- Merger tree
- Bulge growt
- Origin of the bulge
- Summary

- How is the stellar bulge built up? (Tweed, Zolotov et al. in prep)
 - We can track the galactic bulge in time.
- What is the origin of the stellar population within the bulge? (Tweed, Zolotov et al. in prep)
 - Let's use the merger tree..
 - ...Track each star according to the branch or
 - ...according to the kinematic component


Origin of the stellar bulge, stacked 1st gen

Bulge ART II

Introduction

Simulation sample Generation 1 Generation 2 and 3

Analysis Merger tree Bulge growth Origin of the bulge

Back to the future question

Bulge ART II

Introduction

- Simulation sample Generation 1 Generation 2 and 3
- Analysis
- Merger tree
- Bulge growt
- Origin of the bulge
- Summary

- How is the stellar bulge built up? (Tweed, Zolotov et al. in prep)
 - We can track the galactic bulge in time.
- What is the origin of the stellar population? (Tweed, Zolotov et al. in prep)
 - We trace the stars in the stellar bulge
- Ok, in-situ star formation is important, where does the gas comes from? VDL diffuse accretion, cold streams, wet mergers.
 - VDI, diffuse accretion, cold streams, wet mergers.
 - Not easy to trace gas with AMR simulation without tracers
 - Still we might cook up a good estimate

Summary

Bulge ART II

Introduction

- Simulation sample Generation 1
- Generation 2 and 3
- Analysis
- Merger tree
- Bulge growth
- Origin of the bulge

Summary

Simulations

- Large sample of zoom-in simulations
- 2 resolution, and feedback recipes.
- $\sim 30 \ 1^{st}$ generation, ~ 10 pairs 2^{nd} generation, ~ 10 pairs 2^{nd} generation to be analyzed
- Analysis (Tweed, Zolotov et al 2013 in prep, p)
 - High redshift compact bulges form initially in-situ Blue nuggets? see Adi Zolotov talk (Zolotov, Tweed et al 2013 in prep)
 - At lower redshift mergers participate to a more rapid built up of the stellar bulge.
- Undergoing work
 - Effect of resolution and feedback (2nd and 3rd generation)
 - Origin of the gas.