Galaxy formation in the Illustris Simulations

Shy Genel ITC/Harvard

Hernquist, Sijacki, Snyder, Springel, Torrey, Vogelsberger

The overcooling problem (z=0)

"Baryon conversion efficiency" without effective feedback:

- Close to 100% of the cosmic baryon fraction
 - is in stars at M_{halo}>≈10¹²M_{sun}
- 'Numerical quenching' with (standard) SPH

Arepo & RAMSES

The computational challenge

- To "resolve" galaxies/ISM -> at least ~1kpc
- To probe dense environments and get statistical samples -> at least ~(100Mpc)³
- However, usually it is only feasible to use up to $\sim 2 \times 512^3$ resolution elements (to z=0) ==>
 - In a (100Mpc)³ box:
 - 10¹⁰ halos with only ~20 resolution elements
 - Worse than ~1kpc spatial resolution

The Illustris Simulations

- (75Mpc/h)³
- N-body+hydro with Arepo (Springel 2010)
- WMAP-7 cosmology
- ~10 M>10¹⁴M_{sun} halos @ z=0
- >10³ M~10¹²M_{sun} halos @ z=0

Genel+ in prep. Sijacki+ in prep. Vogelsberger+ in prep.

Illustris simulations: resolution, flavors & status

	"Resolved halos" mass [M _{sun} /h]	Baryonic resolution element mass [M _{sun} /h]	Gravitational softening [ckpc/h]	DM- only	Non- radiative	Full Physics
1820 ³	1.7×10 ⁸	9×10 ⁵	1.0->0.5	DONE	Pending	z~0.3 ETA: September
910 ³	1.4×10 ⁹	7×10 ⁶	2.0->1.0	DONE	DONE	DONE
455 ³	1.1×10 ¹⁰	6×10 ⁷	4.0->2.0	DONE	DONE	DONE

Overall: ~40Mcpu-hours, ~400TB

Illustris galaxy formation physics

- Star formation and evolution: mass loss, SN rates
- Chemical enrichment following 9 elements
- Primordial + metal line cooling
- UV/X-ray cosmic background + self-shielding + AGN proximity effects
- Galactic winds (hydro-decoupled, energy-driven)
- BH growth +
 - quasar & radio-mode feedback

Mock HST Deep Fields

 \rightarrow too many stars

Snyder, MV+ (in prep)

Mock HST Deep Fields

HST observation

+ metal line cooling
+ stellar mass loss
→ even more (young) stars

Snyder, MV+ (in prep)

Mock HST Deep Fields

+ SNII feedback

 \rightarrow too many blue galaxies

HST observation

Snyder, MV+ (in prep)

Constraints used for tuning feedback parameters:

Baryon Conversion efficiency

M-Z relation

Vogelsberger, Genel+ 2013

Stellar mass – halo mass relation @ z > 0

Gas fractions

Genel+ in prep.

Tacconi+ 2013

Williams+ 2010

z = 1.5 - 2.0SDSS 0.5 0 10 11 10 11

10.5

11

11.5

10

Genel+ in prep.

Williams+ 2010

Galaxy size evolution

At fixed mass, larger galaxies are more SF-ing
At fixed size, more massive galaxies are more quenched

Evolution of the sSFR

Observed data compiled by Behroozi+ 2013

Evolution of the sSFR

Observed data compiled by Behroozi+ 2013

Evolution of the sSFR

Galaxy bimodality

Genel+ in prep.

2×10¹⁴M_{sun} halo

10¹²M_{sun} halos

Aq-A-5	Aq-B-5	Aq-C-5	Aq-D-5
			Constanting the
Aq-E-5	Aq-F-5	Aq-G-5	Aq-H-5
		and the second second	t and the
			\bigcirc

Marinacci+ 2013

• Disky star-forming centrals

Color: circularity

Color: satellite fraction

- Disky SF-ing centrals
- Quenched spheroidal massive centrals

Color: circularity

Color: satellite fraction

- Disky SF-ing centrals
- Quenched spheroidal massive centrals
- Quenched spheroidal satellites

Color: satellite fraction

- Disky SF-ing centrals
- Quenched spheroidal massive centrals
- Quenched spheroidal satellites
- High-SF irregular (interacting) centrals

Color: satellite fraction

- Disky SF-ing centrals
- Quenched spheroidal massive centrals

Color: circularity

Color: satellite fraction

- Disky SF-ing centrals
- Quenched spheroidal massive centrals

• Disky SF-ing centrals

• Quenched spheroidal massive centrals

• Disky SF-ing centrals

Quenched DISKY massive centrals

- Disky SF-ing centrals
- Quenched spheroidal massive centrals

Summary

- Match to many statistical galaxy scaling relations and properties in the Illustris simulations
- Strong feedback on both ends is required
- Galaxy bimodality: there exists a close (and evolving) morphology-SF relation, albeit with scatter and outliers
- Mass, environment, interactions & AGN all play a role in determining the relation