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1. Inflows and Outflows
2. Evolution of giant clumps in VDI disks

3. Formation of compact spheroids: blue & red




1. Inflows and Outflows




Cosmic-web Streams feed galaxies:
mergers and a smoother component

AMR RAMSES
Teyssier, Dekel

box 300 kpc
res 30 pc
z=501025




Streaming to the disk - a Messy Region

Ceverino, Dekel, Bournaud 2010
ART 35-70pc resolution
W

22
streams I

interaction
region

Breakup due to shocks, hydro and thermal instabilities,
collisions between streams and clumps, heating.




Inflows & Outflows

Tweed, Dekel, Teyssier

leg & (nH/cc)

RAMSES 70-pc resolution

Do outflows find their way out through the dilute medium
with no noticeable effect on the dense cold rapid inflows?
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Inflows and Outflows
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Interaction of Outflows and Inflows

House, Ceverino,Tweed, et al. 13

ART cosmological simulations at 25pc resolution
with radiative feedback

IR gated M (0.1R )/ M (R,)

The inflows and outflows live in harmony
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2. Evolution of Giant Clumps
in VDI Disks




Clumpy DlSk Ceverino, Dekel et al. 10 kpc
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Observations vs. Simulations
2 kpc UDF 9759 Galaxy C

Elmegreen et al
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Violent Disk Instability (VDI) at High z

e Toomre 64;

G@) 1 Isolated galaxies:

) , Noguchi 99; Immeli et al.
Giant clumps and transient features R, o G@ 04;gBour'naud, Elmegreen,
lump

— rapid evolution on dynamical time

High gas density — disk unstable Q

O Elmegreen 06, 08;
Hopkins et al. 12;
Bournaud et al. 13

In cosmology:
Dekel, Sari, Ceverino 09

Agertz et al. 09

Ceverino, AD, Bournaud 10
Ceverino et al. 11
Cacciato, AD, Genel 12a,b
Genel et al. 12

Forbes et al. 12, 13

-
Self-regulated at Q~1 by torques and inflow — high a/V~1/4

Inflow — compact bulge and BH
Steady state: disk draining and replenishment, bulge ~ disk




Clumpy Disk ina cosmologlcal sTeady state

Z:4 a=0 o=0.2 =0.24 Z= 3 =02

VDI is robus’r at z>1 because of hlgh gas density
(cosmollcal densu’ry and m’rense accrehon)

Dekel, Sari,
Ceverino 09;

Ceverino, Dekel,




Clumpy Disk in a cosmological steady state

: Dekel, Sari,
Ceverino 09;

Ceverino, Dekel,
Bournaud 10

Mandelker et al. 13




Simulated hi-z galaxy through Dust

SUNRISE
RGB colors

low dust

MW3
z=2.33

Moody,

Ceverino,
Mozenaq,

Dekel,
Primack




In-situ (VDI) and Ex-situ (merger) Clumps

dark matter




Clumps in Cosmological Simulations

Ceverino, Dekel, Bournaud 10; Ceverino et al. 12; Mandelker et al. 2013

Gas disks in 83% of the galaxies
Off-center clumps in 70% of disks, compact & round, 3-4 per galaxy

In-situ clumps Ex-situ, merging clumps
Dark matter no yes
Kinematics rotating disk 50/50% disk/off disk

Number' 700/0 30%
Mass 45% 55%
SFR 75% 25%

M jump” Maisk 0.02 0.06
Stellar age (Myr) 180 1200
sSFR (Gyr1) 4.0 0.3
Gas fraction 0.3 0.03
Metallicity low tail no low tail




Gradlen’rs of clump proper’nes
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Observational indications for clump survival?

Forster Schreiber et al. 11
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Isolated, gas-rich, turbulent disk
- giant clumps - migration - bulge

Formation of an exponential spiral disk
and a central bulge

from the evolution of a gas-rich primordial disk

evolving through a clumpy phase

Models from Bournaud, Elmegreen & Elmegreen 2007

Noguchi 99; Immeli et al. 04; Bournaud, Elmegreen, Elmegreen 06, 08




Clump Migration on an Orbital Timescale
e v‘i_.,ut 5 1

Ceverino, Dekel, Bournaud 10




Clump Evolution during Migration

“Amy
Mtot(Riisk)

dark matter
Toomre instability 1=Q~ o~ v %)

* Migration to center: torques, 2
encounters, dyn. friction g ~ 0 “ Ly = Blyp = 250M T
Dekel, Sari, Ceverino 09

- y 2 ~
* Mass gain RNz aNo N > ~8ty, = g
Dekel, Krumholz 13 Mandelker et al 13 Bournaud et al 13

30t

* Star formation ~(3g ) 't ~ Hig

dyn dyn

* Momentum-driven outflows; steady wind

DW= l//WVL M . L/C = VL M . VL ~160 km s B ER GO raE:

STARBURST99
Simulations of wind instability Krumholz, Thompson 13
+proto-stellar winds + stellar winds + supernovae -

1 5 Consistent with observed
L u "~ (377‘95&) 1:dyn ~ 1] 11:sfr ~ (1_ 2) 1:mig

tmig ~ tacc < tout S tsfr




Clump Evolution during Migration

max tidal stripping SFR only
(8fy) ™ =31+ 7)eg]

any m, mass varies by < x2
T]"’2 4 Mclump ~ const.
n«l, Mclump ~ X2

n>>1, Mclump —0

for n<4 fo0 ~ CoOnst.
oc eXp (t / tQJaS
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Confirmed in simula’rions
Bournaud et al. 13,
mass loading factor 7 Mandelker et al. 13




Clump Survival

RAMSES simulations of
isolated gas-rich disks

at 5pc resolution

with radiative feedback n~2
Bournaud, AD, Elbaz et al. 13

Migration ~300 Myr

Massive clumps survive
with mass ~constant




Clump Evolution during Migration: Summary

- SFR in clumps drives n~1-2 steady winds
- Gas gain by accretion

- Stellar loss by tidal stripping

- The massive clumps keep ~constant mass
- They live for 1.~ 300 Myr

- They feed gas & stars to the bulge

- Less massive clumps disrupt

Expect a weak gradient of clump mass in disks
Certain gradient in age/color




3. Formation of Compact Spheroids
Blue and Red




Violent Disk Instability < Inflow to Center

Self-regulated Toomre instability (e} o

X

1. Torques between perturbations drive AM out and mass in (e.g. clump migration)
Gammie 01; Dekel, Sari, Ceverino 09

2. Inflow down the potential gradient provides the energy for driving o to Q~1

compensating for the dissipative losses krumholz, Burkert 10; Bournaud et al. 11;
Cacciato et al. 12; Forbes et al. 13; Dekel et al. 13

V2~ Mo*?

R % .
inflow t 1:lnflow
dyn

M

M ~25M @yr_l cold 105 (1 Z)3/25022

inflow

Inflow of gas (and stars),
not limited to clump migration

compact
stellar
bulge




VDI-driven Inflow in Simulations

Dekel et al. 2013; Cacciato
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VDI-driven Inflow in simulations

Dekel et al. 2013




Formation of a Compact Spheroid by VDI
e~Disk in Steady State

SR ' .

»

dark matter




Stellar
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Red Nuggets and Blue Nuggets

Dekel & Burkert 2013; Zolotov et al. 2013

Compact stellar spheroid — dissipative "wet" inflow to a "blue nugget”,
by mergers or VDI

VDI inflow is “wet" if T fon << tstr

Self-requlated instability Q ~ 1 Mo _ 5,2

M

tot

W =
parameter t

t _
Wetnhess sfr ié‘Z >1

zgsf

inflow

Bi-modality in Z: either compact nuggets or extended disks
Start wet inflow — X up — w up — wetter inflow

Blue nuggets are dispersion dominated: o/V ~ 3

Expect VDI-driven nuggets:

- at high z, where £ is high

- for low spin &, where R is low

- for high mass, where outflows are weak, Z hi, A low




Wet Origin of Bulge: Stellar Birthplace

Simulations: Tweed, Zolotov, Dekel, Ceverino, Primack 2013

Bulges
Is halo  Is bulge [SVEiISE Is clump [N 10<f; <13 1:3<fy,

ex-situ (mergers)

Fraction of — |
bulge stars 3 in disk =1n H .l

born in 7.
in bulge

072 I I I
0.0
1

40 38 36 34 32 30 28 26 24 22 20 18 16 1.4 1.2 1
Z

.0

60-30% of the bulge stars form in the bulge — wet inflow

Driven by wet VDI or wet mergers




Observations: Blue Nuggets -> Red Nuggets

Barro et al. CANDELS z=1-3
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Observations: Blue Nuggets -> Red Nuggets

0.005 <z < 0.060
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Evolution:
diffuse — compact — quench
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ART Cosmological Simulations with Fdbk

Zolotov et al. 2013
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Bimodality in Compactness:
Blue Nuggets at Hi z

0.5<z<1.0 1.0<z<1.4 1.4<z<1.8

Lr

1.8<2<2.2 , | 2.6<z<3.0

0 — ™ 4 L1 L
-0.75-05-025 0 0.25 0.5 0.75 vi.- -0.756-05-025 0 025 05 0.75
log(A[Mass-Size]) - 2 log(A[Mass-Size])

75k All
cSFGs
5| QGs

Compactness — Barro et al. 2013




Quenching: BN to RN

Compact gaseous bulge ->
1. starburst -> gas removal by star formation & outflow
2. AGN feedback -> gas removal by outflow

In halos > 1012 My, — L eoemtenils
long-term shutdown -
of gas supply by

virial shock heating

Need both
bulge and halo
quenching

Woo et al. 13

—12 =115 =11 =105 =10 —=9.5
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log M, (M)




Two Modes of Evolution: Fast and Slow

l

star
forming

Barro, Fang, Yesuf, Woo ...

low z

high z

Halo quenching Bulge quenching

Slow: lower Z 4k — Secular {nflow

stellar & AGN fdbk
morph. quenching

halo grows

EE—)

Fast: hi Z o 4k — wet VDI or

merger — inflow — starburst

diffuse > compact




ART Cosmological Simulations with Fdbk

Zolotov et al. 2013
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ART Cosmological Simulations with Fdbk Al EIVES R RFIelE




Conclusions

1. Disks are fed by cosmic-web cold streams: smooth + mergers
- Interphase streams-disk: to be studied
- Outflows and inflows live in harmony

2. Violent disk instability (VDI): by intense gas in-streaming and high density
- In-situ clumps and transient features, plus merged clumps
- In-situ clumps are 70% in number and SFR but 45% in mass, younger
higher sSFR (blue), lower Z, showing certain gradients due to migration

- Steady mass loss by momentum-driven outflows from clumps, n~1-2
- The clumps grow by accretion from the disk during migration, M~const.

3. VDI-driven inflow to disk center — classical compact bulge

- Blue nuggets (and AGN) when the inflow is "wet”, i.e. faster than SFR
VDI and mergers.
This is when Z ¢ is high, at high z and in galaxies of low spin or high mass

- The nuggets are dispersion-dominated

- Fast mode: bulge quenching to red nuggets by stellar/AGN feedback,
maintained by halo heating.

- Slow mode: dominated by halo quenching




The High-z "Hubble" Sequence

Red nuggets Blue nuggets Clumpy disks

***M *J
i P o 2

Compact ellipticals Starburst ina No bars
compact bulge Perturbed spiral patterns
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Bulge mass [101°M]

Bulge mass [101°M,]

major
mergers?

Bulge growth by
mergers versus
disk instability

Tweed, Zolotov

U, = fraction of mass
added in mergers of 1:m

Bulge mass [10°M,]

disk
instability?
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Outflow and In
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