Violent Disk Instability at z=1-4 Outflows; Clump Evolution; Compact Spheroids

Avishai Dekel The Hebrew University of Jerusalem

Santa Cruz, August 2013

Outline

- 1. Inflows and Outflows
- 2. Evolution of giant clumps in VDI disks
- 3. Formation of compact spheroids: blue & red

1. Inflows and Outflows

Cosmic-web Streams feed galaxies: mergers and a smoother component

Streaming to the disk - a Messy Region

Breakup due to shocks, hydro and thermal instabilities, collisions between streams and clumps, heating.

Inflows & Outflows

Tweed, Dekel, Teyssier

RAMSES 70-pc resolution

Do outflows find their way out through the dilute medium with no noticeable effect on the dense cold rapid inflows?

Inflows and Outflows

Interaction of Outflows and Inflows

House, Ceverino, Tweed, et al. 13

ART cosmological simulations at 25pc resolution with radiative feedback

Inflow penetration $\dot{M}(0.1R_v)/\dot{M}(R_v)$

2. Evolution of Giant Clumps in VDI Disks

Violent Disk Instability (VDI) at High z

 $Q \propto \frac{\sigma \Omega}{G\Sigma} \le 1$

 $R_{\rm clump} \propto$

 $G\Sigma$

High gas density \rightarrow disk unstable

Giant clumps and transient features \rightarrow rapid evolution on dynamical time

Toomre 64;

Isolated galaxies: Noguchi 99; Immeli et al. 04; Bournaud, Elmegreen, Elmegreen 06, 08; Hopkins et al. 12; Bournaud et al. 13

In cosmology: Dekel, Sari, Ceverino 09 Agertz et al. 09 Ceverino, AD, Bournaud 10 Ceverino et al. 11 Cacciato, AD, Genel 12a,b Genel et al. 12 Forbes et al. 12, 13

Self-regulated at Q~1 by torques and inflow \rightarrow high $\sigma/V\sim1/4$ Inflow \rightarrow compact bulge and BH Steady state: disk draining and replenishment, bulge ~ disk

Clumpy Disk in a cosmological steady state

Dekel, Sari, Ceverino 09;

Ceverino, Dekel, Bournaud 10

Mandelker et al. 13

Simulated hi-z galaxy through Dust

low dust

medium

RGB colors MW3 z=2.33

SUNRISE

Moody, Ceverino, Mozena, Dekel, Primack

In-situ (VDI) and Ex-situ (merger) Clumps

Clumps in Cosmological Simulations

Ceverino, Dekel, Bournaud 10; Ceverino et al. 12; Mandelker et al. 2013

Gas disks in 83% of the galaxies Off-center clumps in 70% of disks, compact & round, 3-4 per galaxy

	In-situ clumps	Ex-situ, merging clumps
Dark matter	no	yes
Kinematics	rotating disk	50/50% disk/off disk
Number	70%	30%
Mass	45%	55%
SFR	75%	25%
M _{clump} /M _{disk}	0.02	0.06
Stellar age (Myr) 180	1200
sSFR (Gyr ⁻¹)	4.0	0.3
Gas fraction	0.3	0.03
Metallicity	low tail	no low tail

Observational indications for clump survival?

Forster Schreiber et al. 11

Isolated, gas-rich, turbulent disk - giant clumps - migration - bulge

Formation of an exponential spiral disk and a central bulge from the evolution of a gas-rich primordial disk evolving through a clumpy phase

Models from Bournaud, Elmegreen & Elmegreen 2007

Noguchi 99; Immeli et al. 04; Bournaud, Elmegreen, Elmegreen 06, 08

Clump Migration on an Orbital Timescale

Ceverino, Dekel, Bournaud 10

Clump Evolution during Migration

Clump Survival

RAMSES simulations of isolated gas-rich disks at 5pc resolution with radiative feedback η~2 Bournaud, AD, Elbaz et al. 13

Migration ~300 Myr Massive clumps survive with mass ~constant

Clump Evolution during Migration: Summary

- SFR in clumps drives η ~1-2 steady winds
- Gas gain by accretion
- Stellar loss by tidal stripping
- The massive clumps keep ~constant mass
- They live for t_{mig}~ 300 Myr
- They feed gas & stars to the bulge
- Less massive clumps disrupt

Expect a weak gradient of clump mass in disks Certain gradient in age/color

3. Formation of Compact Spheroids Blue and Red

Violent Disk Instability \leftrightarrow Inflow to Center

Self-regulated Toomre instability $Q \approx \frac{\sigma \Omega}{\Sigma} \approx \delta^{-1} \frac{\sigma}{V} \approx 1 \longrightarrow \frac{M_{\text{cold}}}{M_{\text{tot}}} \equiv \delta \approx \frac{\sigma}{V}$

- 1. Torques between perturbations drive AM out and mass in (e.g. clump migration) Gammie 01; Dekel, Sari, Ceverino 09
- Inflow down the potential gradient provides the energy for driving σ to Q~1 compensating for the dissipative losses Krumholz, Burkert 10; Bournaud et al. 11; Cacciato et al. 12; Forbes et al. 13; Dekel et al. 13

$$\dot{M}_{\rm inflow}V^2 \approx \frac{M\sigma^2}{t_{\rm dyn}} \longrightarrow t_{\rm inflow} \approx t_{\rm dyn}\delta^{-2}$$

$$M_{\rm inflow} \approx 25 M_{\odot} {\rm yr}^{-1} M_{\rm cold, 10.5} (1+z)_3^{3/2} \delta_{0.2}^2$$

Inflow of gas (and stars), not limited to clump migration

clumpy gas disk

compact stellar bulge

VDI-driven Inflow in Simulations

Dekel et al. 2013; Cacciato

stable

VDI-driven Inflow in simulations

Dekel et al. 2013

Formation of a Compact Spheroid by VDI Bulge~Disk in Steady State

Stellar Component z=2.3 Edge-on

Ceverino et al. 2013

Red Nuggets and Blue Nuggets

Dekel & Burkert 2013; Zolotov et al. 2013

Compact stellar spheroid \rightarrow dissipative "wet" inflow to a "blue nugget", by mergers or VDI

VDI inflow is "wet" if t_{inflow} << t_{sfr}

Self-regulated instability $Q \sim 1$

Wetness parameter

$$w \equiv \frac{t_{\rm sfr}}{t_{\rm inflow}} \approx \varepsilon_{\rm sfr}^{-1} \delta^2 > 1$$

$$\frac{M_{\text{cold}}}{M_{\text{tot}}} \equiv \delta \approx \frac{\sigma}{V} \qquad \delta \approx \frac{\Sigma_{\text{g}}}{\Sigma_{\text{g}} + \Sigma_{*} + \Sigma_{\text{dm}}}$$
$$\varepsilon_{\text{sfr}} \le 0.02 \qquad \delta \ge 0.2$$

Bi-modality in Σ : either compact nuggets or extended disks Start wet inflow $\rightarrow \Sigma$ up \rightarrow w up \rightarrow wetter inflow

Blue nuggets are dispersion dominated: $\sigma/V \sim \delta$

Expect VDI-driven nuggets:

- at high z, where f_{gas} is high
- for low spin λ , where R_{gas} is low

- for high mass, where outflows are weak, Σ hi, λ low

Wet Origin of Bulge: Stellar Birthplace

Simulations: Tweed, Zolotov, Dekel, Ceverino, Primack 2013

Driven by wet VDI or wet mergers

Observations: Blue Nuggets -> Red Nuggets

Barro et al. CANDELS z=1-3

Observations: Blue Nuggets -> Red Nuggets

Barro et al. z=1-3

ART Cosmological Simulations with Fdbk

Zolotov et al. 2013

Bimodality in Compactness: Blue Nuggets at Hi z

Quenching: BN to RN

Compact gaseous bulge -> 1. starburst -> gas removal by star formation & outflow 2. AGN feedback -> gas removal by outflow

In halos > $10^{12} M_{\odot} \rightarrow$ long-term shutdown of gas supply by virial shock heating

Need both bulge and halo quenching

ART Cosmological Simulations with Fdbk

Zolotov et al. 2013

ART Cosmological Simulations with Fdbk Za

Zolotov et al. 2013

Conclusions

1. Disks are fed by cosmic-web cold streams: smooth + mergers

- Interphase streams-disk: to be studied
- Outflows and inflows live in harmony
- 2. Violent disk instability (VDI): by intense gas in-streaming and high density
 - In-situ clumps and transient features, plus merged clumps
 - In-situ clumps are 70% in number and SFR but 45% in mass, younger higher sSFR (blue), lower Z, showing certain gradients due to migration
 - Steady mass loss by momentum-driven outflows from clumps, η ~1-2
 - The clumps grow by accretion from the disk during migration, M~const.

3. VDI-driven inflow to disk center \rightarrow classical compact bulge

- Blue nuggets (and AGN) when the inflow is "wet", i.e. faster than SFR VDI and mergers.
 - This is when Σ_{gas} is high, at high z and in galaxies of low spin or high mass
- The nuggets are dispersion-dominated
- Fast mode: bulge quenching to red nuggets by stellar/AGN feedback, maintained by halo heating.
- Slow mode: dominated by halo quenching

The High-z "Hubble" Sequence

Bulge growth by mergers versus disk instability

Tweed, Zolotov

 μ_m = fraction of mass added in mergers of 1:m

Outflow and Inflows

