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- Quenching Models

Centrals:

Virial shock heating in halos > M __ ~ 10" M } Halo

AGN heating | }
Gaseous inflow to a compact bulge = starburst = gas exhau\stion '
— Major mergers
— Inflow within gravitationally unstable disc %
. : K . > Galaxy
Morphological quenching: bulge stabilises the disc
v

Satellites:
Ram pressure stripping: gas (strangulation)
Tidal stripping: gas and stars

Harrassment: high speed interactions



Description of Data
SDSS DR7: 0 <z<0.2
Quenching = low SFR; ¢ ~ 0.2 dex 0 <2 <02

— Brinchmann et al. (2004) (spectral lines + photometry)

— Incorporates dust model

Mass
- M,: 0 ~ 0.1 dex MPA (Brinchmann et al.) (photometry)

- M : 0~ 0.3 dex, Group catalogue of Yang et al. (2012)

Centrals vs. Satellites:

— Central = Most massive member AND nearest to mass-weighted centre

— Satellite distance from the central galaxy D = dpmj/Rvir: o~ 0.1 dex

Morphology/structure: 0 <z <0.075
~ Central surface density 2 't 0~ 0.1 dex

— PSF corrections via Fourier quotient method



Mass vs. Morphology: Centrals

SDSS Centrals SDSS Cerm‘ols
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Interpretation of Results

* Proposition:
— Increase of /, is related to the transfer across bimodality; quick

~ Decrease of SSFR is related to the slower fadingof star formation

. Therefore Zo -quenching is fast and M, -quenching is slow
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Interpretation of Results

* Proposition:
— Increase of /_1s related to the transfer across bimodality; quick

— Decrease of SSFR is related to the s/lower fadingof star formation

e Therefore 2 -quenching is fast and M, -quenching is slow

e Makes sense because:

— Virial shock heating is expected to cut off accretion; remaining gas is
expected to continue forming stars

e Timescales can be ~ 2-3 Gyr or higher at higher z
— Mechanisms that result in high 2 kpe AT expected to be violent (VDI,

mergers)

« Once gas is consumed M, could play maintenance role of quenching
(prevents new gas from falling in)

* These 1deas need to be tested — initial tests in a SAM look promising!



Quenching and Morphology: Satellites

SDSS Satellites; 1 kpe > PSF width
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The quenched fraction depends on 2 ke 10 the outskirts of halos.
The quenched fraction depends on A, in the inner halo.
Almost all satellites are quenched above 10'*° M _

Woo et al., in preparation



Quenching Results for Satellites

e QOuter regions of haloes:
- Zlkpc dominates f

— Satellites only recently fell in; have not had time to experience the
slow halo quenching

* e, galaxies on the slow mode can move onto the fast mode

e Inner regions of haloes:
- M, dominates f
— Almost all satellites are quenched for M, > 10"**M _

o slightly greater than M__ perhaps due to quenching delay



* Summary

« Both the halo and central density play role in quenching

P Zlkpc determines fq Quick transition : *
- M_determines SSFR Slow fading of star formation

e Satellites: ' . ' ‘ g
- M_quenching happens in the inner hglo (since halo quenching is slow) .

« Nearly all quenched above a few x M__

- 2, -related quenching (fast mode) affects satellites in outer halo

. ‘ H_'.
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