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OPEN QUESTIONS: 
POP III STARS AND GALAXIES DURING REIONIZATION

• How did metal-free (Pop III) stars affect high-z structure 
formation?

•Metal enrichment

• Reionization

•Dwarf galaxy properties

•Why do current models overpredict SF in low-mass galaxies at 
high redshift? aka “forming-too-many-stars-at-high-z problem”

• How do these dwarf galaxies depend on environment?

•Do Pop III stars leave any physical (e.g. metallicity gradients,  
M/L ratios, metallicity distributions) imprint on dwarf galaxies?
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OUR APPROACH:
SIMULATIONS

• Small-scale (<3 Mpc3) AMR radiation hydro simulations

• Coupled radiative transfer (ray tracing in the optically thin and 
thick regimes)

enzo-project.org
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H II REGION OF A PRIMORDIAL STAR
Density Temperature

•106 M⊙ DM halo; z = 17; single 100 M⊙ star (no SN)
•Drives a 30 km/s shock wave, expelling most of the gas

Abel, Wise, & Bryan (2007)

1.2 kpc
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OUR APPROACH:
AMR RAD-HYDRO SIMULATIONS

• Small-scale (1 comoving Mpc3) AMR radiation hydro simulation 
with Pop II+III star formation and feedback (1000 cm-3 threshold)

• Coupled radiative transfer (ray tracing: optically thin and thick regimes)

• 1800 M⊙ mass resolution, 0.1 pc maximal spatial resolution

• Self-consistent Population III to II transition at 10-4 Z⊙

• Assume a Kroupa-like IMF for Pop III stars with mass-dependent 
luminosities, lifetimes, and endpoints.

Wise, Turk, Norman, & Abel (2012)

Schaerer (2002), Heger+ (2003)
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Heger et al. (2003)
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DWARF GALAXY BUILDUP

• The initial buildup of the dwarfs are regulated by prior Pop III 
feedback and radiative feedback from nearby galaxies.

Galaxies with similar 
halo masses can differ 
in stellar mass by an 
order of magnitude!

M★/Mgas = 0.01–0.05
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MASS-TO-LIGHT RATIOS

Scatter created by different environments 
and Pop III progenitor masses
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•Most massive halo 
(109 M⊙) at z=7

•Undergoing a major 
merger

•Bi-modal metallicity 
distribution function

•2% of stars with   
[Z/H] < -3

• Induced SF makes 
less metal-poor stars 
formed near SN 
blastwaves
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Z-L RELATION IN 
LOCAL DWARF 

GALAXIES

• Average metallicity in a 
106 L⊙ galaxy is [Fe/H] 
~ –2

• Useful constraint of 
high-redshift galaxies, if 
we assume that this 
metal-poor population 
was formed during 
reionization.

Kirby+ (2011)
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VARYING THE SUBGRID MODELS

Mchar = 40 M⊙ No H2 cooling (i.e. minihalos)

Zcrit = 10-5 and 10-6 Z⊙ No Pop III SF

Redshift dependent 
Lyman-Werner background (LWB)

Supersonic streaming velocities

LWB + Metal cooling
LWB + Metal cooling + 

enhanced metal ejecta (y=0.025)

LWB + Metal cooling + radiation pressureLWB + Metal cooling + radiation pressure
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STAR FORMATION RATES

Pop II

Pop III
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NEGLECTING M < 108 M⊙ HALOS
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•No stellar feedback in M < 108 M⊙ halos → fgas = Ωb / Ωm

• High-z halos are too gas-rich, leading to an overproduction of 
stellar mass and SFR in low-mass, high-z galaxies.

Wise & Abel (2008); JHW+ (in prep.)
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EFFECTS OF RADIATION PRESSURE
MVIR = 3 X 108 M⊙ GALAXY AT z = 8
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EFFECTS OF RADIATION PRESSURE
 AVG. METALLICITIES IN DENSITY-TEMPERATURE SPACE
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H2 cooling to T ~ 1000 K.  
Local UV radiation field 

prevents cooling to 300 K.

Metal-rich ejecta “trapped” in cold, dense 
gas.  Little mixing.

Radiation pressure aids 
in dispersing metals to 

the ISM.

JHW+ (arXiv:1206.1043)

Friday, 17 August 12



EFFECTS OF RADIATION PRESSURE
METALLICITY DISTRIBUTION FUNCTIONS

Feedback from 
radiation pressure 
more effectively 

disperses metal-rich 
ejecta and produces a 
galaxy on the mass-
metallicity relation

JHW+ (arXiv:1206.1043)
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FUTURE WORK

Projected Temperature
(scale: 103 – 3 x 104 K)

• Same physics (Mchar = 40 M⊙)
• 40 cMpc box

• Zoom-in region of 5 cMpc
• 104 Msun DM particles

Projected Density
(scale: 3 x 10-28 – 3 x 10-24 g/cm3)
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CONCLUSIONS
• Radiative and chemical feedback play an important role in the 

formation of the first galaxies and starting reionization

• Population III stars enrich the IGM and dwarf galaxies up to 10-3Z⊙, 
possibly providing a metallicity floor for halo/dSph stars and DLAs.

• Differing Population III stellar feedback can cause a scatter in M/L up 
to a factor of 30 at a fixed DM mass.

• Radiation pressure (in addition to photo-heating and SNe) may play 
an important role in high-z dwarf galaxy formation.

• Even the smallest galaxies are complex with star formation and 
feedback.

Friday, 17 August 12



Friday, 17 August 12



IONIZATION HISTORY

Redshift

M
as

s-
w

ei
gh

te
d 

io
ni

za
tio

n 
fr

ac
tio

n

Friday, 17 August 12


