Galaxy formation: big and small

Romain Teyssier

Ben Moore (Zürich) Lucio Mayer (Zürich) Davide Martizzi (Zürich) Justin Read (Zürich) Yohan Dubois (Paris) Andrew Pontzem (Oxford) Julien Devriendt (Oxford)

- 1- Galaxy formation and feedback
- 2- AMR simulations of a dwarf galaxy with stellar feedback

arxiv/1206.4895

3- AMR simulations of a massive elliptical with AGN feedback Davide Martizzi's PhD work

Feedback processes in galaxy formation

Simulated MW properties dominated by feedback

Stellar feedback with delayed cooling

Stellar winds, supernovae remnants are highly turbulent environment, filled with cosmic rays and magnetic field.

Thermal energy dissipates almost instantaneously through cooling. Non-thermal processes dissipate much more slowly.

Hanasz et al. 2009 ; Scannapieco & Brüggen 2010; Wadepuhl & Springel 2011 and others...

Here, we capture the non-thermal energy as:

Chandra image of Tycho

 $ho rac{D \epsilon_{turb}}{Dt} = \dot{E}_{inj} - rac{
ho \epsilon_{turb}}{t_{diss}} \qquad \epsilon_{turb} = \sigma_{turb}^2$

The total dynamical pressure is $P_{tot} = P_{thermal} + P_{turb}$

Maximal feedback scenario: $\dot{E}_{inj} = \dot{\rho}_* \eta_{SN} 10^{50} \text{ erg/M}_{\odot}$ $t_{diss} \simeq 10 \text{ Myr}$

We mimic slow dissipation of non-thermal energy using delayed cooling for the thermal energy:

$$\rho \frac{D\epsilon_{thermal}}{Dt} = \dot{E}_{inj} - P_{thermal} \nabla \cdot \mathbf{v} - n_H^2 \Lambda \quad \text{with} \quad \Lambda = 0 \text{ if } \sigma_{turb} > 10 \text{ km/s}$$

High density threshold SF in dwarf galaxies

High-resolution SPH simulations with dense clumps and strong feedback result in very strong and very fast potential variations.

Read & Gilmore (2005); Mashchenko et al. (2008); Governato et al. (2010)

Irreversible «heating» of the dark matter cusp into a core.

Pontzen & Governato (2011)

Feedback in dwarf galaxies: a controlled experiment

We consider an equilibrium NFW halo (dark matter + 15% gas). parameters: N_{DM} =10⁶, Δx =20 pc, V_{200} =35 km/s, M_{200} =10¹⁰ M_{sol} 3 runs with the RAMSES code: 1- pure adiabatic hydrostatic case 2- pure cooling and star formation (no feedback) versus 3- stellar feedback

Widely different galaxy properties

Romain Teyssier

Dark matter core out of an initially cuspy profile

Romain Teyssier

...lead to an irreversible flattening of the cusp

A (cored ?) exponential profile

R_d=1 kpc

Mass profile of WLM

Solution:

Early radiative stellar feedback with 10x the fiducial supernovae energy.

Brook et al. 2012

Another solution:

Lower the SF efficiency by 10 (low metallicity induces low H2 formation efficiency ?)

Krumholz & Dekel 2011

AND use a top-heavy IMF (boost the mass fraction in massive star by 10)

Marks et al. 2012

Constraints from abundance matching

A simple model for SMBH growth and feedback

Numerical implementation in cosmological simulations: Di Matteo et al. 2005, Sijacki et al. 2007; Booth & Schaye 2010 and many others...

In high density regions with stellar 3D velocity dispersion > 100 km/s, we create a seed BH of mass $10^5 M_{sol}$. Gültekin et al. (2009)

Accretion is governed by 2 regimes:

Free parameter ε_c calibrated on the M- σ relation.

Galaxy formation on cluster scales

Romain Teyssier

Booth & Schaye 10; Teyssier+10; Sembolini+11; Dubois+10,11; Martizzi+11

A dichotomy in the structure of elliptical galaxies

1774 FABER ET AL.: EARLY-TYPE GALAXIES. IV.

Kormendy et al. 2009

0.3 0.4 0.2 Ψ Ψ 0.2 0.1 0.0 0.0 NGC 4472 NGC 4486 16 E2 E1 M., = -23.24 = -22.95 M_{er} 18 = 5.99 1 83 11.84 : 1.2 n n PC F555W μ (V mag arcsec⁻²) μ (V mag arcsec⁻²) 20 Louer + 920 ACS V Louer + 05 V 20 + CFHT Coss V * ACS V CFHT Coss V * SDSS V o Bender + 08 V 22 25 24 McDonold 0.8 m V * Liu + 05 R McDonald 0.8 m V * Mihos + 05 V * 26 Sersic Fit (3.5" to 877") Sersic Fit (15.1" to 1778.3") 0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 r1/4 (arcsec1/4) r1/4 (orcsec1/4) core size ~ 0.5 kpc core size ~ 3 kpc

Kormendy et al. 2009

Kinematic properties of the BCG

Structural properties of the BCG

Romain Teyssier

From the Sersic fit, we infer a mass deficit $M_{def}=10^{11} M_{sol}$ or $M_{def}/M_{\bullet}=20$.

Origin of stellar and dark matter cores in clusters

Conclusion

A new stellar feedback scheme in RAMSES based on non-thermal processes and implemented as a delayed-cooling scheme.

Dwarf (10¹⁰ M_{sol}) cooling halo simulations give rise to a cusp-core dark matter profile transition, due to large potential fluctuations within the core.

Kinematic analysis reveals a thick, rotating, exponential disk, in striking agreement with the observed, quasi-isolated dwarf WLM.

Still too many baryons in stars: even stronger feedback required, or nonstandard SF efficiencies with a top-heavy IMF (low Z regime ?).

The Booth & Schaye AGN feedback model has been implemented in RAMSES and used in a 10¹⁴ M_{sol} halo cosmological simulation.

This brings the massive central galaxy properties in agreement with observations (no more overcooling).

Kinematics analysis reveals a massive, slowly rotating elliptical galaxy with a cored Sersic profile.

AGN feedback (high z) and SMBH scouring (low z) give rise to the formation of a dark matter and a stellar core (or broken power law) of similar sizes.