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Motivation 
  Galaxies-dark matter halo connection key link between 

galaxy formation and cosmology 
  Understanding galaxy-halo connection can inform galaxy 

formation physics 
  Large galaxy surveys (e.g., SDSS, DES) to probe cosmology 

depend on galaxy-halo connection 
  E.g., clustering of dark matter inferred from galaxy clustering 
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Our Study 
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  Populate a high resolution N-body simulation with 
galaxies using abundance matching 

  Test the abundance matching assumptions using precise 
z=0.05 data from SDSS 

  Constrain the (very few) relevant parameters 



Sloan Digital Sky Survey 
  NYU-VAGC catalog from DR7 spectra 
  Includes log(M*)>9.8 to z=0.063 
  Volume 4.8x106 (Mpc/h)^3 
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Bolshoi Simulation 
  Collisionless dark matter simulation 
  250 Mpc/h cube, 20483 particles 
  Force resolution of ~1 kpc/h 
  Allows resolution of dark matter halos to 50 km/s 

  Down to objects ~Small Magellanic Cloud 

  Using halos found using Rockstar 
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Simulation - Klypin et al 2010  



finite scale: we truncate at 40 h!1 Mpc for SDSS galaxies (x 4.1)
and 20 h!1 Mpc for DEEP2 galaxies (x 4.2), as is done in the
data. Since the simulation box size is only 80 h!1 Mpc, the
measurement of !(r) is not reliable for rk 0:1Lbox " 8 h!1 Mpc.
To extrapolate !(r) to larger scales, we use !m(r), the two-point
correlation function of dark matter,7 multiplied by the linear bias
of !(r) measured over 4 < r/(h!1 Mpc) < 8.

Generating !(" ) from !(r) without assuming !(r) to be a
power law is somewhat more involved. With knowledge of the
redshift distribution,N (z), of the sample, !(" ) can be derived via
the Limber transformation:
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where Dm(z) is the proper-motion distance and RH(z) is the
Hubble radius at redshift z. As for !p, the integral over !(r) is in
practice truncated at a finite scale; we integrate to 50 h!1 Mpc
and note that the resulting !(" ) is not sensitive to this particular
truncation scale.

4.1. Clustering at z " 0

The SDSS (York et al. 2000; Abazajian et al. 2004) is a large
photometric and spectroscopic survey of the local universe.
Zehavi et al. (2005) have measured the luminosity and color de-
pendence ofwp(rp) for"200,000 SDSS galaxies over)2500 deg2

with z < 0:15. As mentioned in x 3, assigning Vmax to galaxy
luminosity while preserving the observed LF results in a unique
L-Vmax relation. In order to make the assignment we use the
SDSS LF presented in Blanton et al. (2003), with Schechter (1976)
parameters in the r bandM *

r ! 5 log h ¼ !20:5, # ¼ !1:05, and
$* ¼ 1:5 ; 10!2 h!3 Mpc3. It is then straightforward to com-

pare the observed luminosity dependence of both the small- and
large-scale clustering of SDSS galaxies to our model.
The results for luminosity threshold samples (L > Lth) are

shown in the left panel of Figure 5, where we compare the
Zehavi et al. (2005) results to the clustering of halos corre-
sponding to the range of galaxy luminosities in each sample. For
the three halo samples with n ¼ 6 ; 10!3, n ¼ 1:5 ; 10!2, and
n ¼ 2:8 ; 10!2 h3 Mpc!3 we use the L80 simulation, while for
the halo sample with n ¼ 1:1 ; 10!3 h3 Mpc!3 we use the L120
simulation in order to improve statistics. See Table 1 for details
of the SDSS samples used here. The agreement is excellent over
all scales. We find similar agreement when wp(rp) is measured in

Fig. 5.—Left: Comparison between the SDSS projected correlation function (circles) and the correlation function derived from halos (solid lines) for various luminosity
threshold samples. For comparisonwe include the correlation function of darkmatter particles (dotted lines) at themedian redshift of the sample.Right: The firstmoment of
the HOD for the four halo samples. For all four samples, the gradual roll-off at small mass is due to scatter in the Vmax-mass relation.

TABLE 1

Summary of Samples

Data Sample Definitiona z̄ b
n/10!3

(h3 Mpc!3)
Vmax

c

(km s!1)

SDSS..................... Mr < !18 0.04 27.0 110

Mr < !19 0.06 15.0 130

Mr < !20 0.06 6.0 180
Mr < !21 0.15 1.1 310

DEEP2................... MB < !19.0 0.87 13.0 150

MB < !19.5 0.92 8.4 170

MB < !20.0 0.98 4.9 200
MB < !20.5 0.99 2.5 250

Adelberger............. UnGR colors 2.9 4.0 207

Subaru ................... i < 25.0 4 0.8 265

i < 25.5 4 1.9 225
i < 26.0 4 3.8 191

i < 26.5 4 6.4 174

GOODS................. mz < 26.0, B-drop 4 2.7 205
mz < 26.5, B-drop 4 4.5 185

mz < 26.0, V-drop 5 1.5 200

mz < 26.5, V-drop 5 2.6 180

a Absolute SDSS and DEEP2 magnitudes are in units of M ! 5 log (h).
b Mean redshift of sample; for Subaru and GOODS data, z̄ is based on

Monte Carlo simulations of artificial LBGs.
c Maximum circular velocity Vmax such that n(>Vmax) ¼ nsample for halos at

the simulation output closest to z̄.

7 We derive the dark matter correlation function from the power spectrum
provided by the publicly available code of Smith et al. (2003), which is more
accurate than the popular Peacock and Dodds prescription.

CONROY, WECHSLER, & KRAVTSOV206 Vol. 647Where are the galaxies? 
  SHAM avoids additional 

assumptions of more 
complex models 

  Single assumption: galaxies 
reside in dark matter halos 
  And galaxy properties 

depend on halo properties 
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Conroy,  Wechsler, & Kravstov, 2006 



Sub-Halo Abundance Matching 
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Model Requirements 
  Requires an input stellar mass function 
  What matching parameter – Vnow,  Vpeak, Macc… 
  Scatter in stellar mass 

  Log-normal in stellar mass at fixed halo “mass” (vpeak) 
  Width (scatter) assumed to be constant 

  Galaxy disruption – μcut 

  Considers possibility that galaxy is disrupted before subhalo 
  Satellites considered disrupted when Mnow < μcut* Mpeak 
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Bolshoi Simulation 
  Collisionless dark matter simulation 
  250 Mpc/h cube, 20483 particles 
  Force resolution of ~1 kpc/h 
  Allows resolution of dark matter halos to 50 km/s 

  Down to objects ~Small Magellanic Cloud 

  Using halos found using Rockstar 
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Subhalo Abundance Matching 



Results – Correlation Function 
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The Galaxy–Halo Connection in the Local Universe 13

FIG. 8.— Comparison of observed galaxy statistics between SDSS DR7 and our best-fit model, which uses vpeak, µcut=0.03 and scatter=0.20 dex. Note that
only the CSMF and correlation functions with log(M⇤) > 10.2 are used for fitting. Plots are the same as described in Fig. 4.



Results – CSMF 
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The Galaxy–Halo Connection in the Local Universe 13

FIG. 8.— Comparison of observed galaxy statistics between SDSS DR7 and our best-fit model, which uses vpeak, µcut=0.03 and scatter=0.20 dex. Note that
only the CSMF and correlation functions with log(M⇤) > 10.2 are used for fitting. Plots are the same as described in Fig. 4.

The Galaxy–Halo Connection in the Local Universe 13

FIG. 8.— Comparison of observed galaxy statistics between SDSS DR7 and our best-fit model, which uses vpeak, µcut=0.03 and scatter=0.20 dex. Note that
only the CSMF and correlation functions with log(M⇤) > 10.2 are used for fitting. Plots are the same as described in Fig. 4.



Results – satellite fraction 
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The Galaxy–Halo Connection in the Local Universe 13

FIG. 8.— Comparison of observed galaxy statistics between SDSS DR7 and our best-fit model, which uses vpeak, µcut=0.03 and scatter=0.20 dex. Note that
only the CSMF and correlation functions with log(M⇤) > 10.2 are used for fitting. Plots are the same as described in Fig. 4.



Constraints 
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FIG. 7.— Constraints for the scatter and µcut parameters, for abundance matching models which assign galaxies to vpeak of both halos and subhalos. Clustering
constraints use data for galaxies with log(M⇤) > 10.2. Levels give P(> �2), corresponding to 1, 2, 3, and 5-� contours. Upper left: Constraint from clustering
only. Upper right: Constraint from central part of CSMF only. Lower left: Constraint from satellite part of CSMF only. Lower right: Parameter constraints using
the total �2 from all three measurements.

and � = 0.20, we take the mean CSMF and two-point clus-
tering of the nine data points within µcut=0.02 ± 0.01 and
� = 0.20 ± 0.01. This is a reasonable procedure as nearby
points in parameters space have relatively small changes in
output observables and it smooths fluctuations in the likeli-
hood due to occasional individual outlier points in the CSMF.

We find that only the model based on vpeak can produce an
adequate fit to both the CSMF and the clustering combined.
This model provides an excellent fit to the CSMF and cluster-
ing above log(M⇤) ⇠ 10. However, in general, even the best-
fit versions have slightly low clustering on small scales for the
log(M⇤)> 9.8 samples. Because we cannot cleanly determine
whether this is due to a systematic issue with the simulation
or a problem with the model, we exclude this lowest threshold
from the total �2 calculated for the combined measures. The
Mh = [12.6,12.9] host mass bin from the CSMF estimated �2,
has significant fluctuations in neighboring bins in stellar mass,
which suggest some problematic behavior in the SDSS mea-
surement in that bin, and we omit this bin from our combined
fits.

Parameter constraints for this model are shown in Fig. 7.
Here we show the constraints from clustering alone, from the
central and satellite parts of the CSMF separately, and from all

of these statistics together. Notably, all three data sets require
scatter of < 0.25 dex. Marginalizing over scatter to obtain µcut
provides only upper limits: µcut< 0.07 (68%) and µcut< 0.11
(95%). Marginalizing over µcut and interpolating between
points in parameter space, the resulting constraints on scat-
ter using the vpeak model are � = 0.200± 0.02 dex (68%) or
� = 0.200±0.03 dex (95%). The scatter is most strongly con-
strained by the two components of the CSMF, while µcut is
determined largely by the clustering.

The measured statistics of the best-fit model are shown
in Fig 8. For the best-fit case, we use scatter of 0.20 dex,
and µcut=0.03, both well inside the constraints. This is the
best-fit model in the absence of the local averaging proce-
dure described above for estimating the constraints. We show
the clustering and stellar mass functions used to constrain
the model, which are in excellent agreement except for the
dimmest galaxies. We also compare the total group stellar
mass function, the satellite fraction, and the scatter in central
galaxy properties. All statistics are in excellent agreement
with the data for galaxies with stellar masses greater than
log(M⇤) ⇠ 10; there is slightly less clustering and a smaller
substructure fraction in the lowest bin of stellar mass.

As shown in Fig. 7, both the central and satellite parts of the



Conclusions 
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  Abundance matching is a simple (and accurate) model for 
log(M*)>10 
  Abundance matching assumptions are very good at producing 

galaxy populations using vpeak only 
  Depth of halo potential is primary driver of galaxy properties 
  Implies halos (but not galaxies!) are stripped significantly before 

infall at Rvir 
  Also implies moderate, but constant (~0.20 dex) scatter 

  Useful for constraining (low-redshift) SAMs 

  See Reddick et al, arXiv:1207.2160 (ApJ submitted) 



Group Finding 
  Needed for measurement of group statistics (e.g., CSMF) 
  Assigns halo mass based on total stellar mass of group 
  Most massive galaxy => central 
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28 Reddick et al

FIG. 21.— Left: Effect of group finding on the satellite fraction. The intrinsic satellite fraction in the model (black) is significantly higher than when reassigning
the brightest cluster galaxy as the central (blue) in galaxies with high stellar masses. This is because the nonzero scatter allows a significant number of true
satellites to be scattered up in stellar mass, increasing the satellite fraction of massive galaxies. This effect increases with scatter; in a zero-scatter model, the
change is negligible. This is also the primary difference between the intrinsic satellite fraction and that obtained via the group finder (green). All lines are for the
vpeak, µcut=0, scatter=0.20 dex model. Right: Fraction of central galaxies where at least one satellite in the same halo has higher stellar mass. The result is shown
on the mocks for two different simulation, the Bolshoi simulation (black) and the Consuelo simulation (red) which is lower resolution. These both use a model
with stellar mass, vpeak, µcut = 0.03, and scatter of 0.20 dex. Error bars show statistical jackknife errors. The gray band gives the resulting range in the fBNC
fraction given the 1� range in scatter for the fitted Bolshoi model. This probability is also shown for two other values of scatter (0.30 dex and zero) in Bolshoi,
which are ruled out by the data.

A. EFFECTS OF THE GROUP FINDER
The group finder itself has a significant impact on our various measurements. As discussed in the main text, the two primary

systematic effects of the group finder are the artificial reduction of scatter in central galaxy stellar mass for low halo masses, and
the assumption that the most massive galaxy in a group must be the central. A clear demonstration of this may be seen in Fig. 21.
Here, we show the difference in the model satellite fraction between using the intrinsic central galaxies, and assuming that the
most massive galaxy is the central, both using the intrinsic group assignment. As expected, this significantly reduces the satellite
fraction of massive galaxies, since in large clusters it is not unlikely for at least one satellite to be more assigned a higher stellar
mass than the central. (This can be seen in the intrinsic CSMF in Fig. 12.) This is the primary reason for the difference in satellite
fraction between the intrinsic satellite fraction and that obtained from the group finder. Furthermore, this effect becomes stronger
in models with increased scatter, because non-central galaxies are more likely to be scattered up in stellar mass than the intrinsic
central, and is almost negligible in models with zero scatter.

The fraction of central galaxies that do not have the most stellar mass (or are not the brightest) increases with host halo mass, as
can be seen in the right-hand plot of Fig. 21. It also increases with intrinsic scatter, but is not strongly dependent on the resolution
of the dark matter simulation. The values we find for moderate scatter are in general agreement with the study of Skibba et al.
(2011). The recent weak lensing study of George et al. (2012) tests multiple different center definitions for groups with a range in
Mhost of 1013 - 1014 M�. They find that ⇠ 20 - 30% of these groups have "ambiguous" centers, where multiple center definitions
are in significant disagreement. This is also in good agreement with the fractions we measure in Fig. 21.

This effect of group finding can also be seen in a comparison between the intrinsic CSMF (Fig. 12) and that obtained after
the use of the group finder (Fig. 8). Note that although the distribution of galaxies in massive halos is not strongly changed,
the central distribution in the low-mass halos sharpens considerably after group finding, lowering the inferred scatter due to
correlations between central properties and group properties.

B. RESOLUTION REQUIREMENTS
The use of a high-resolution simulation such as Bolshoi is essential to this work. A simulation with more massive particles or

a larger softening length would not be able to resolve as many subhalos, particularly those near the center of massive clusters
(see Behroozi et al. 2011a and Onions et al. 2012 for related subhalo information, and Wu et al. 2012 for a more detailed
discussion) which tend to be victims of "overmerging" or otherwise become prematurely disrupted. Fig. 22 shows the difference
between using Bolshoi, and the Consuelo and Esmeralda simulations from the LasDamas suite (McBride in prep). Consuelo
(see also Behroozi et al. 2011a; Leauthaud et al. 2011) uses 14003 particles in a volume of (420 h-1Mpc)3 (with a particle mass
of 1.9⇥ 109, while Esmeralda has 12503 particles in (640 h-1Mpc)3 (with a particle mass of 9.3⇥ 109). Bolshoi, Consuelo and
Esmeralda have (physical) force resolution of 1, 8 and 15 kpc/h, respectively.

The same abundance matching model was applied to all three simulations. As can be seen in the figure, the model applied to
Consuelo (with the same parameters) has a significant deficit of satellites with M⇤ > 10.5, while the loss of satellites in Esmeralda
is even more severe. Because smaller subhalos are more easily disrupted, there are fewer of them. Thus, for a selection at a
fixed stellar mass to have the appropriate number density from abundance matching, a mixture of smaller halos (and sometimes
subhalos) will be given a greater stellar mass than they would be assigned if the prematurely disrupted subhalos had not been
lost. Most of these halos will be isolated halos, reducing the satellite fraction. This also reduces the clustering, particularly at the



Brightest != Central Fraction 
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FIG. 21.— Left: Effect of group finding on the satellite fraction. The intrinsic satellite fraction in the model (black) is significantly higher than when reassigning
the brightest cluster galaxy as the central (blue) in galaxies with high stellar masses. This is because the nonzero scatter allows a significant number of true
satellites to be scattered up in stellar mass, increasing the satellite fraction of massive galaxies. This effect increases with scatter; in a zero-scatter model, the
change is negligible. This is also the primary difference between the intrinsic satellite fraction and that obtained via the group finder (green). All lines are for the
vpeak, µcut=0, scatter=0.20 dex model. Right: Fraction of central galaxies where at least one satellite in the same halo has higher stellar mass. The result is shown
on the mocks for two different simulation, the Bolshoi simulation (black) and the Consuelo simulation (red) which is lower resolution. These both use a model
with stellar mass, vpeak, µcut = 0.03, and scatter of 0.20 dex. Error bars show statistical jackknife errors. The gray band gives the resulting range in the fBNC
fraction given the 1� range in scatter for the fitted Bolshoi model. This probability is also shown for two other values of scatter (0.30 dex and zero) in Bolshoi,
which are ruled out by the data.

A. EFFECTS OF THE GROUP FINDER
The group finder itself has a significant impact on our various measurements. As discussed in the main text, the two primary

systematic effects of the group finder are the artificial reduction of scatter in central galaxy stellar mass for low halo masses, and
the assumption that the most massive galaxy in a group must be the central. A clear demonstration of this may be seen in Fig. 21.
Here, we show the difference in the model satellite fraction between using the intrinsic central galaxies, and assuming that the
most massive galaxy is the central, both using the intrinsic group assignment. As expected, this significantly reduces the satellite
fraction of massive galaxies, since in large clusters it is not unlikely for at least one satellite to be more assigned a higher stellar
mass than the central. (This can be seen in the intrinsic CSMF in Fig. 12.) This is the primary reason for the difference in satellite
fraction between the intrinsic satellite fraction and that obtained from the group finder. Furthermore, this effect becomes stronger
in models with increased scatter, because non-central galaxies are more likely to be scattered up in stellar mass than the intrinsic
central, and is almost negligible in models with zero scatter.

The fraction of central galaxies that do not have the most stellar mass (or are not the brightest) increases with host halo mass, as
can be seen in the right-hand plot of Fig. 21. It also increases with intrinsic scatter, but is not strongly dependent on the resolution
of the dark matter simulation. The values we find for moderate scatter are in general agreement with the study of Skibba et al.
(2011). The recent weak lensing study of George et al. (2012) tests multiple different center definitions for groups with a range in
Mhost of 1013 - 1014 M�. They find that ⇠ 20 - 30% of these groups have "ambiguous" centers, where multiple center definitions
are in significant disagreement. This is also in good agreement with the fractions we measure in Fig. 21.

This effect of group finding can also be seen in a comparison between the intrinsic CSMF (Fig. 12) and that obtained after
the use of the group finder (Fig. 8). Note that although the distribution of galaxies in massive halos is not strongly changed,
the central distribution in the low-mass halos sharpens considerably after group finding, lowering the inferred scatter due to
correlations between central properties and group properties.

B. RESOLUTION REQUIREMENTS
The use of a high-resolution simulation such as Bolshoi is essential to this work. A simulation with more massive particles or

a larger softening length would not be able to resolve as many subhalos, particularly those near the center of massive clusters
(see Behroozi et al. 2011a and Onions et al. 2012 for related subhalo information, and Wu et al. 2012 for a more detailed
discussion) which tend to be victims of "overmerging" or otherwise become prematurely disrupted. Fig. 22 shows the difference
between using Bolshoi, and the Consuelo and Esmeralda simulations from the LasDamas suite (McBride in prep). Consuelo
(see also Behroozi et al. 2011a; Leauthaud et al. 2011) uses 14003 particles in a volume of (420 h-1Mpc)3 (with a particle mass
of 1.9⇥ 109, while Esmeralda has 12503 particles in (640 h-1Mpc)3 (with a particle mass of 9.3⇥ 109). Bolshoi, Consuelo and
Esmeralda have (physical) force resolution of 1, 8 and 15 kpc/h, respectively.

The same abundance matching model was applied to all three simulations. As can be seen in the figure, the model applied to
Consuelo (with the same parameters) has a significant deficit of satellites with M⇤ > 10.5, while the loss of satellites in Esmeralda
is even more severe. Because smaller subhalos are more easily disrupted, there are fewer of them. Thus, for a selection at a
fixed stellar mass to have the appropriate number density from abundance matching, a mixture of smaller halos (and sometimes
subhalos) will be given a greater stellar mass than they would be assigned if the prematurely disrupted subhalos had not been
lost. Most of these halos will be isolated halos, reducing the satellite fraction. This also reduces the clustering, particularly at the



Group Finding – CSMF 
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FIG. 7.— Constraints for the scatter and µcut parameters, for abundance matching models which assign galaxies to vpeak of both halos and subhalos. Clustering
constraints use data for galaxies with log(M⇤) > 10.2. Levels give P(> �2), corresponding to 1, 2, 3, and 5-� contours. Upper left: Constraint from clustering
only. Upper right: Constraint from central part of CSMF only. Lower left: Constraint from satellite part of CSMF only. Lower right: Parameter constraints using
the total �2 from all three measurements.

and � = 0.20, we take the mean CSMF and two-point clus-
tering of the nine data points within µcut=0.02 ± 0.01 and
� = 0.20 ± 0.01. This is a reasonable procedure as nearby
points in parameters space have relatively small changes in
output observables and it smooths fluctuations in the likeli-
hood due to occasional individual outlier points in the CSMF.

We find that only the model based on vpeak can produce an
adequate fit to both the CSMF and the clustering combined.
This model provides an excellent fit to the CSMF and cluster-
ing above log(M⇤) ⇠ 10. However, in general, even the best-
fit versions have slightly low clustering on small scales for the
log(M⇤)> 9.8 samples. Because we cannot cleanly determine
whether this is due to a systematic issue with the simulation
or a problem with the model, we exclude this lowest threshold
from the total �2 calculated for the combined measures. The
Mh = [12.6,12.9] host mass bin from the CSMF estimated �2,
has significant fluctuations in neighboring bins in stellar mass,
which suggest some problematic behavior in the SDSS mea-
surement in that bin, and we omit this bin from our combined
fits.

Parameter constraints for this model are shown in Fig. 7.
Here we show the constraints from clustering alone, from the
central and satellite parts of the CSMF separately, and from all

of these statistics together. Notably, all three data sets require
scatter of < 0.25 dex. Marginalizing over scatter to obtain µcut
provides only upper limits: µcut< 0.07 (68%) and µcut< 0.11
(95%). Marginalizing over µcut and interpolating between
points in parameter space, the resulting constraints on scat-
ter using the vpeak model are � = 0.200± 0.02 dex (68%) or
� = 0.200±0.03 dex (95%). The scatter is most strongly con-
strained by the two components of the CSMF, while µcut is
determined largely by the clustering.

The measured statistics of the best-fit model are shown
in Fig 8. For the best-fit case, we use scatter of 0.20 dex,
and µcut=0.03, both well inside the constraints. This is the
best-fit model in the absence of the local averaging proce-
dure described above for estimating the constraints. We show
the clustering and stellar mass functions used to constrain
the model, which are in excellent agreement except for the
dimmest galaxies. We also compare the total group stellar
mass function, the satellite fraction, and the scatter in central
galaxy properties. All statistics are in excellent agreement
with the data for galaxies with stellar masses greater than
log(M⇤) ⇠ 10; there is slightly less clustering and a smaller
substructure fraction in the lowest bin of stellar mass.

As shown in Fig. 7, both the central and satellite parts of the
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FIG. 7.— Constraints for the scatter and µcut parameters, for abundance matching models which assign galaxies to vpeak of both halos and subhalos. Clustering
constraints use data for galaxies with log(M⇤) > 10.2. Levels give P(> �2), corresponding to 1, 2, 3, and 5-� contours. Upper left: Constraint from clustering
only. Upper right: Constraint from central part of CSMF only. Lower left: Constraint from satellite part of CSMF only. Lower right: Parameter constraints using
the total �2 from all three measurements.

and � = 0.20, we take the mean CSMF and two-point clus-
tering of the nine data points within µcut=0.02 ± 0.01 and
� = 0.20 ± 0.01. This is a reasonable procedure as nearby
points in parameters space have relatively small changes in
output observables and it smooths fluctuations in the likeli-
hood due to occasional individual outlier points in the CSMF.

We find that only the model based on vpeak can produce an
adequate fit to both the CSMF and the clustering combined.
This model provides an excellent fit to the CSMF and cluster-
ing above log(M⇤) ⇠ 10. However, in general, even the best-
fit versions have slightly low clustering on small scales for the
log(M⇤)> 9.8 samples. Because we cannot cleanly determine
whether this is due to a systematic issue with the simulation
or a problem with the model, we exclude this lowest threshold
from the total �2 calculated for the combined measures. The
Mh = [12.6,12.9] host mass bin from the CSMF estimated �2,
has significant fluctuations in neighboring bins in stellar mass,
which suggest some problematic behavior in the SDSS mea-
surement in that bin, and we omit this bin from our combined
fits.

Parameter constraints for this model are shown in Fig. 7.
Here we show the constraints from clustering alone, from the
central and satellite parts of the CSMF separately, and from all

of these statistics together. Notably, all three data sets require
scatter of < 0.25 dex. Marginalizing over scatter to obtain µcut
provides only upper limits: µcut< 0.07 (68%) and µcut< 0.11
(95%). Marginalizing over µcut and interpolating between
points in parameter space, the resulting constraints on scat-
ter using the vpeak model are � = 0.200± 0.02 dex (68%) or
� = 0.200±0.03 dex (95%). The scatter is most strongly con-
strained by the two components of the CSMF, while µcut is
determined largely by the clustering.

The measured statistics of the best-fit model are shown
in Fig 8. For the best-fit case, we use scatter of 0.20 dex,
and µcut=0.03, both well inside the constraints. This is the
best-fit model in the absence of the local averaging proce-
dure described above for estimating the constraints. We show
the clustering and stellar mass functions used to constrain
the model, which are in excellent agreement except for the
dimmest galaxies. We also compare the total group stellar
mass function, the satellite fraction, and the scatter in central
galaxy properties. All statistics are in excellent agreement
with the data for galaxies with stellar masses greater than
log(M⇤) ⇠ 10; there is slightly less clustering and a smaller
substructure fraction in the lowest bin of stellar mass.

As shown in Fig. 7, both the central and satellite parts of the
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FIG. 7.— Constraints for the scatter and µcut parameters, for abundance matching models which assign galaxies to vpeak of both halos and subhalos. Clustering
constraints use data for galaxies with log(M⇤) > 10.2. Levels give P(> �2), corresponding to 1, 2, 3, and 5-� contours. Upper left: Constraint from clustering
only. Upper right: Constraint from central part of CSMF only. Lower left: Constraint from satellite part of CSMF only. Lower right: Parameter constraints using
the total �2 from all three measurements.

and � = 0.20, we take the mean CSMF and two-point clus-
tering of the nine data points within µcut=0.02 ± 0.01 and
� = 0.20 ± 0.01. This is a reasonable procedure as nearby
points in parameters space have relatively small changes in
output observables and it smooths fluctuations in the likeli-
hood due to occasional individual outlier points in the CSMF.

We find that only the model based on vpeak can produce an
adequate fit to both the CSMF and the clustering combined.
This model provides an excellent fit to the CSMF and cluster-
ing above log(M⇤) ⇠ 10. However, in general, even the best-
fit versions have slightly low clustering on small scales for the
log(M⇤)> 9.8 samples. Because we cannot cleanly determine
whether this is due to a systematic issue with the simulation
or a problem with the model, we exclude this lowest threshold
from the total �2 calculated for the combined measures. The
Mh = [12.6,12.9] host mass bin from the CSMF estimated �2,
has significant fluctuations in neighboring bins in stellar mass,
which suggest some problematic behavior in the SDSS mea-
surement in that bin, and we omit this bin from our combined
fits.

Parameter constraints for this model are shown in Fig. 7.
Here we show the constraints from clustering alone, from the
central and satellite parts of the CSMF separately, and from all

of these statistics together. Notably, all three data sets require
scatter of < 0.25 dex. Marginalizing over scatter to obtain µcut
provides only upper limits: µcut< 0.07 (68%) and µcut< 0.11
(95%). Marginalizing over µcut and interpolating between
points in parameter space, the resulting constraints on scat-
ter using the vpeak model are � = 0.200± 0.02 dex (68%) or
� = 0.200±0.03 dex (95%). The scatter is most strongly con-
strained by the two components of the CSMF, while µcut is
determined largely by the clustering.

The measured statistics of the best-fit model are shown
in Fig 8. For the best-fit case, we use scatter of 0.20 dex,
and µcut=0.03, both well inside the constraints. This is the
best-fit model in the absence of the local averaging proce-
dure described above for estimating the constraints. We show
the clustering and stellar mass functions used to constrain
the model, which are in excellent agreement except for the
dimmest galaxies. We also compare the total group stellar
mass function, the satellite fraction, and the scatter in central
galaxy properties. All statistics are in excellent agreement
with the data for galaxies with stellar masses greater than
log(M⇤) ⇠ 10; there is slightly less clustering and a smaller
substructure fraction in the lowest bin of stellar mass.

As shown in Fig. 7, both the central and satellite parts of the
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FIG. 19.—: Demonstration of vpeakmodel with µcut=0 and � = 0.2, as applied for Bolshoi (blue) and to Consuelo (green), with the
measured values from DR7 (black) shown for comparison. Note that the inability of Consuelo to resolve all satellite halos results
in a deficit of satellites and a drop in the small-scale clustering. Plots are the same as described in Fig. 4
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