An off-center density peak in the Milky Way's Dark Matter halo?

AKA: Impact of baryonic physics on DM detection experiments

Michael Kuhlen, Berkeley

with Javiera Guedes, Annalisa Pillepich, Piero Madau, Lucio Mayer

2012 Santa Cruz Galaxy Workshop

Motivation: 130 GeV gamma-ray line from the Galactic Center

Weniger 2012

Su & Finkbeiner 2012

Is this DM annihilation?

DM annihilation?

- 2-body annihilation: $\chi \chi \rightarrow \chi \gamma$, χZ , χh
- Normally "loop suppressed" (10⁻² 10⁻⁴) compared to continuum radiation.
- But models with enhanced lines exist, e.g.: Singlet DM (Profumo et al. 2010)
 "Higgs in Space" (Jackson et al. 2010)

Bergström & Ullio 1997

2012 Santa Cruz Galaxy Workshop

Is this DM annihilation?

DM annihilation?

- 2-body annihilation: $\chi \chi \rightarrow \chi \gamma$, χZ , χh
- Normally "loop suppressed" (10⁻² 10⁻⁴) compared to continuum radiation.
- But models with enhanced lines exist, e.g.: Singlet DM (Profumo et al. 2010)
 "Higgs in Space" (Jackson et al. 2010)

Instrument systematics?

• Earth limb photons of intermediate incidence angle show a similar line...

Is this DM annihilation?

DM annihilation?

- 2-body annihilation: $\chi \chi \rightarrow \chi \gamma$, χZ , χh
- Normally "loop suppressed" (10⁻² 10⁻⁴) compared to continuum radiation.
- But models with enhanced lines exist, e.g.: Singlet DM (Profumo et al. 2010)
 "Higgs in Space" (Jackson et al. 2010)

Instrument systematics?

• Earth limb photons of intermediate incidence angle show a similar line...

Astrophysical explanations?

- Broken power-law mimics line? (Profumo & Linden 2012)
- Inverse Compton in the Klein-Nishina regime with ~130 GeV mono-chromatic electrons from multiple pulsars? (Aharonian et al. 2012)

Fig. 1. Colour: energy spectra of the inverse Compton radiation of mono-energetic electrons upscattering isotropic target photons for 4 different values of the parameter b: 1, 7, 50 and 100. The energy of gamma-rays is in units of the electron energy. *Grey*: the gamma-ray spectrum produced by electrons with relativistic Maxwellian distribution; in this case the photon energies are in units of 4Θ , where Θ is the "temperature" of Maxwellian distribution.

The line is not exactly at the Galactic Center

The significance of the signal is maximized at $(l,b) = (-1.5^{\circ},0^{\circ})$, or about **200 projected pc** from Sgr A*.

The line is not exactly at the Galactic Center

The significance of the signal is maximized at $(\ell, b) = (-1.5^{\circ}, 0^{\circ})$, or about **200 projected pc** from Sgr A*.

2012 Santa Cruz Galaxy Workshop

Example of DM offsets

38 clusters measured in X-rays and with strong lensing.

10,000 SDSS clusters: offset between BCG and strong lensing center

2 out 15 THINGS galaxies with well constrained photometric centers have offsets between the dynamical and photometric centers of 1-2 radio beams (150-700 pc) (Trachternach et al. 2008).

Galaxy clusters commonly exhibit offsets of tens of kpc between the center of the DM halo and the BCG / X-ray center.

The Eris Simulation

For more details see Guedes et al. 2011

Cosmological SPH Zoom-in Simulation

- 7 million DM particles ($10^5 M_{\odot}$)
- 3 million gas particles ($2 \times 10^4 M_{\odot}$)
- 8.6 million star particles ($4-6 \times 10^3 M_{\odot}$)
- radiative cooling (Compton, atomic, low-T metallicity-dependent)
- heating from cosmic UV (~ Haardt & Madau 1996)
- Supernova feedback (ε_{SN}=0.8) (Stinson et al. 2006)
- Star formation
 - threshold: $n_{SF} = 5 \text{ atoms/cm}^3$
 - efficiency: $\epsilon_{sF} = 0.1$
 - IMF: Kroupa et al. 1993
 - No AGN feedback

Results in a realistic looking Milky-Way-like spiral disk galaxy at z=0.

The Eris Simulation

For more details see Guedes et al. 2011

Cosmological SPH Zoom-in Simulation

- 7 million DM particles ($10^5 M_{\odot}$)
- 3 million gas particles ($2 \times 10^4 M_{\odot}$)
- 8.6 million star particles ($4-6 \times 10^3 M_{\odot}$)
- radiative cooling (Compton, atomic, low-T metallicity-dependent)
- heating from cosmic UV (~ Haardt & Madau 1996)
- Supernova feedback (ε_{SN}=0.8) (Stinson et al. 2006)
- Star formation
 - threshold: $n_{SF} = 5 \text{ atoms/cm}^3$
 - efficiency: $\epsilon_{SF} = 0.1$
 - IMF: Kroupa et al. 1993
 - No AGN feedback

Results in a realistic looking Milky-Way-like spiral disk galaxy at z=0.

Eris & ErisDark

ErisDark has the same initial conditions as Eris, except that all of the matter is treated as dark matter. (Pillepich et al., in prep.)

2012 Santa Cruz Galaxy Workshop

DM offset in Eris

In the dissipational simulation (Eris), the maximum of the DM density is displaced from the minimum of the potential (dynamical center).

The DM-only runs show no such offset (to within one grav. softening length).

2012 Santa Cruz Galaxy Workshop

Formation and Evolution of the Offset

The offset is no fluke – it appears around z=1.5 and persists afterwards.

 $< D_{off} > = 340 \text{ pc} \text{ (almost 3 } \epsilon_{soft} \text{)}.$

In ErisDark the offset remains below $\sim 1\epsilon_{soft}$.

Formation and Evolution of the Offset

The formation of the offset seems to correlate with a flattening of the central density profile.

A common mechanism?

Formation and Evolution of the Offset

Eris output are spaced ~35 Myr – too long for dynamical analysis.

High output cadence re-run of the last few hundred Myr of Eris.

Typically close to the disk plane: $<\Delta R > = 340 \pm 51 \text{ pc}$ $<\Delta z > = 64 \pm 46 \text{ pc}$

Not stationary. Not coherent. Sometimes multiple peaks.

Statistical Fluctuation?

Perhaps the density peak is a Poisson fluctuation due to the small number of particles in the center?

Statistical Fluctuation?

Perhaps the density peak is a Poisson fluctuation due to the small number of particles in the center?

ast 120 Eris outputs.

500 random realizations with same mean particle number density as in Eris: 5100 DM particles / kpc³.

Statistical Fluctuation?

Incompletely disrupted subhalo? Dynamical friction is inefficient in a constant density core... Maybe a subhalo's core is orbiting around the center?

Statistical Fluctuation?

Incompletely disrupted subhalo? Dynamical friction is inefficient in a constant density core... Maybe a subhalo's core is orbiting around the center?

Particles within 1 ϵ_{soft} of the offset peak at one time are no longer part of the offset peak as short as 1.5 Myr later.

Not a coherent, bound structure. Not a subhalo.

Statistical Fluctuation?

Incompletely disrupted subhalo?

External perturbation displaces stellar disk?

The stars and gas are self-bound. An external perturber could displace them from the center and they would "slosh" around the DM halo?

Statistical Fluctuation?

Incompletely disrupted subhalo?

External perturbation displaces stellar disk?

The stars and gas are self-bound. An external perturber could displace them from the center and they would "slosh" around the DM halo?

An external perturber (subhalo of mass $M \sim 2.8 \times 10^9 M_{\odot}$) passes by at z~1.3...

Statistical Fluctuation?

Incompletely disrupted subhalo?

External perturbation displaces stellar disk?

The stars and gas are self-bound. An external perturber could displace them from the center and they would "slosh" around the DM halo?

But: no sign of any abrupt displacement of the potential mimimum at that time...

Statistical Fluctuation?

Incompletely disrupted subhalo?

External perturbation?

Resonant interaction with the stellar bar? At times Eris has a very pronounced stellar bar. Maybe orbital resonances could lead to a density-wave-like excitation?

Ceverino & Klypin 2007

Statistical Fluctuation?

Incompletely disrupted subhalo?

External perturbation?

Resonant interaction?

At times Eris has a very pronounced stellar bar. Maybe orbital resonances could lead to a density-wave-like excitation?

The direction of the DM offset is aligned with the orientation of the stellar bar in Eris.

Statistical Fluctuation?

Incompletely disrupted subhalo?

External perturbation?

Resonant interaction?

At times Eris has a very pronounced stellar bar. Maybe orbital resonances could lead to a density-wave-like excitation?

The angle in the disk plane to the offset shows periodic behavior.

DM annihilation implications?

At the resolution of the Eris simulation the contrast in DM annihilation surface brightness between the peak and the Galactic Center is only ~10-15%.

Such a low contrast is not compatible with a DM annihilation interpretation of the 130 GeV line.

HOWEVER: WE DO NOT RESOLVE THE OFFSET PEAK! The contrast may increase with higher resolution...

Although at first sight the 1.5° offset of the 130 GeV gamma-ray line from the Galactic Center may appear as incompatible with a DM annihilation interpretation, this may in fact not be so outlandish.

- Although at first sight the 1.5 offset of the 130 GeV gamma-ray line from the Galactic Center may appear as incompatible with a DM annihilation interpretation, this may in fact not be so outlandish.
- In Eris we observe an offset between the maximum DM density and the minimum of the potential of ~340 pc after z=1.5.
- No such offset is seen in pure-DM simulations, implying that baryonic physics may be responsible in some way.

- Although at first sight the 1.5 offset of the 130 GeV gamma-ray line from the Galactic Center may appear as incompatible with a DM annihilation interpretation, this may in fact not be so outlandish.
- In Eris we observe an offset between the maximum DM density and the minimum of the potential of ~340 pc after z=1.5.
- No such offset is seen in pure-DM simulations, implying that baryonic physics may be responsible in some way.
- Perhaps due to an interaction of the DM halo with the stellar bar?

- Although at first sight the 1.5 offset of the 130 GeV gamma-ray line from the Galactic Center may appear as incompatible with a DM annihilation interpretation, this may in fact not be so outlandish.
- In Eris we observe an offset between the maximum DM density and the minimum of the potential of ~340 pc after z=1.5.
- No such offset is seen in pure-DM simulations, implying that baryonic physics may be responsible in some way.
- Perhaps due to an interaction of the DM halo with the stellar bar?

More general conclusion:

Extrapolating density profiles obtained from pure-DM simulations (NFW, Einasto, etc.) all the way to tens of parsec from the Galactic Center may not be such a good idea.