
Analyzing Simulated Data

Matthew Turk

There is only one sky.

(but there are many simulation codes)

Different methods,
data structures,

assumptions,
IO methods,

units,
variable names,

...

Analysis.

astro-ph/1011.3514
yt-project.org

install script:

Full dependency stack
Source code

Development environment
GUI

Sample data

yt has been designed to
address physical, not

computational, entities.

Process
I Read
I Correlate
I Process
I Visualize

The Universe is full of gas, dark
matter and stars. yt makes it easy

to access that material.

Transparent IO, masking of overlapping
data, load-on-demand, geometric and non-
geometric selection, field generation, and
common interfaces to different datatypes.

Enzo, Orion, CASTRO, FLASH

Chombo, Tiger, Athena, ART,
RAMSES

yt is designed to be the lingua franca
of astrophysical codes.

Objects

(conceptual, uniformly
accessible NumPy stores)

Objects

Orthogonal Rays
Non-orthogonal Rays 1D

Slices
Oblique Slices
Projections

2D

Spheres
Rectangular Prisms
Disks/Cylinders
Inclined Boxes
Clumps
Extracted Regions
Boolean combinations

3D

Objects

All respect unified interface:

from yt.mods import *
pf = load(“DataDump0155.dir/DataDump0155”)
ray = pf.h.ray([0.1, 0.2, 0.5],
 [0.4, 0.9, 0.1])
print ray[“Density”]

Objects

All respect unified interface:

from yt.mods import *
pf = load(“DataDump0155.dir/DataDump0155”)
sl = pf.h.slice(0, 0.5)

print sl[“Density”]

Objects

All respect unified interface:

from yt.mods import *
pf = load(“DataDump0155.dir/DataDump0155”)
sp = pf.h.sphere(100.0/pf[‘au’], ‘max’)

print sp[“Density”]

from yt.mods import *
pf = load(“DataDump0155.dir/DataDump0155”)
v, c = pf.h.find_max(“Density”)

Adding new fields should be easy.

from yt.mods import *

@derived_field(“Pressure”)
def Pressure(field, data):
 return (data.pf["Gamma"] - 1.0) * \
 data["Density"]*data["ThermalEnergy"]

Scripts should be simple and clear.

from yt.mods import *
pf = load(“DataDump0155.dir/DataDump0155”)
pc = PlotCollection(pf)
pc.add_phase_sphere(1000.0, ‘au’,
 [“Density”, “Temperature”, “H2I_Fraction”])
pc.save()

from yt.mods import *
pf = load(“DataDump0155.dir/DataDump0155”)
pc = PlotCollection(pf)
pc.add_phase_sphere(1000.0, ‘au’,
 [“Density”, “Temperature”,
 “CellMassMsun”], weight = None)
pc.save()

Slices

from yt.mods import *
pf = load(’galaxy0030/galaxy0030’)
p = SlicePlot(pf, 2, ’Density’, ’c’, (200,’kpc’))
p.save(’Galaxy’)

from yt.mods import *
pf = load(’galaxy0030/galaxy0030’)
p = SlicePlot(pf, 2, ’Density’, ’c’, (200,’kpc’))
p.set_width(20, ’kpc’)
p.save("GalaxyZoom")

(px, py, pdx, pdy, z)

Projections

from yt.mods import *
pf = load(’galaxy0030/galaxy0030’)
p = ProjectionPlot(pf, 2, ’Density’, ’c’, (20,’kpc’))
p.save(’Galaxy’)

Oblique Slices

Off-axis Projection

Project once,
pixelize many

(px, py, pdx, pdy, z)

Image Buffer

(px, py, pdx, pdy, z)

Image Buffer

Parallelism

Parallelism

Embarassingly Parallel Spatial Decomposition

Decomposed by load or
IO characteristics

Helper functions to
decompose the domain

Parallelism

Embarassingly Parallel Spatial Decomposition

Quantities
Profiles
Slices

Projections
Volume Rendering

Halo Finding

Multi-level parallelism: dynamic workgroups,
communicators, subgroups and task queues

Volume Rendering

dIν

ds
= jν − ανIν

Designed around integrating through a volume:
visualization is a side effect.

from yt.mods import *
pf = load(“DD1701/DD1701”)
v, c = pf.h.find_max("Density")
L = [1.0, 1.0, 1.0]
W = 100.0/pf['mpc']

tf = vr.PlanckTransferFunction()
cam = pf.h.camera(c, L, W, 1024, tf)
cam.snapshot()

Canned Analysis Tasks

Absorption Spectrum
Coordinate Transformations

Halo Finding
Mass Functions
Merger Trees
Halo Profiling

Level Sets
Light Cones
Light Rays
Time Series

Star Analysis
Two-Point Analysis

Level Sets

Synthetic Spectra

Two-Point Functions

Three Halo Finders:

Standard HOP

Friends of Friends

Parallel HOP

Rockstar (beta)

co-scheduled & in situ viz

Simulation

yt

Process

Thin NumPy wrappers and stop-n-go

On Disc → In-situ

Simulation

yt

Inter-comm

Fire and forget, no embedded interpreter

Developing as a Team

Code review:

eyes on (nearly) every changeset

Forky development:

very low barrier to entry;
everything comes in the box.

Testing:

answer as well as integration tests
get run every 30 minutes.

80,000 lines of code
Python, Cython, C

20 contributors (60+ users)
Contributors from 10+ institutions

8AM 6PM

Contributors
Tom Abel
David Collins
Andrew Cunningham
Nathan Goldbaum
Cameron Hummels
Ji-hoon Kim
Steffen Klemer
Kacper Kowalik
Michael Kuhlen
Eve Lee
Chris Malone
Chris Moody
Andrew Myers
Jeff Oishi

Jean-Claude Passy
Thomass Robitaille
Anna Rosen
Anthony Scopatz
Devin Silvia
Sam Skillman
Stephen Skory
Britton Smith
Geoffrey So
Casey Stark
Elizabeth Tasker
Rick Wagner
John Wise
John ZuHone

How to get started
http://yt-project.org/
http://yt-project.org/issac2012/

