Cosmology & The Milky Way

James Bullock @jbprime

Universe of Galaxies (~ 10^{-8} of observable part)

~100 million light years

Why does the Universe look this way?

~100 million light years

Why do galaxies have these shapes?

Our Laboratory: The Local Group

~5 million light years

Andromeda Galaxy

Mauna Kea, Hawaii.

Wally Pacholka/Astropics.com

Andromeda Galaxy

Mauna Kea, Hawaii.

Wally Pacholka/Astropics.com

Andromeda (M31)

Vera Rubin 1969

Rotation speed

Distance from center

Dark Matter

Rotation speed

Distance from center

Composition of the Cosmos

Normal Matter

5%

Cold Dark Matter 25%

Dark Energy 70%

Cosmic Microwave Background 1990-2000's

- Temperature map of universe 300,000 yrs after Big Bang
- Universe smooth to 1/100,000
- Need extra mass to get clumpy universe today.

Dark Matter allows galaxies to grow:

Look-back time (Gyr)→13.3960 200 million lt yrs

Allgood et al. 06

Map of real universe

Simulated universe

Each point = 1 galaxy

Springel et al.

Map of real universe

2 billion light years ŝ

Simulated universe

Broad brush: we seem to understand things What about the details?

y as the shat have not the two

Sagittarius dwarf

The Milky Way in Star Counts

Sloan Digital Sky Ssurvey III (Koposov et al.)

David Law/University of Virginia

-2.65 Gyr

Purcell, JSB, Tollerud, Rocha, Charkrabarti, Nature, 2011

Purcell, JSB, Tollerud, Rocha, Charkrabarti, Nature, Sept. 2011

Without Sag.

With Sag.

Sagittarius Dwarf ⇒ Spiralilty, Rings, Bar Evolution in the Galaxy

Intermediate-scale spiral structure, similar to MW

More streams around the Milky Way

100 degrees of sky

Predicted accretion history of typical galaxy

JSB & Johnston 2005

Halo Streams & Substructure

Law & Majewski 06

Bullock & Johnston 05

Data (+ models engineered to match)

Random LCDM realization

Andromeda Galaxy (M31)

Andromeda galaxy also surrounded by streams

Towards more detailed tests

Observed Universe

Simulation

Does the Milky Way look like this?

Shea Garrison-Kimmel

100,000 light years

dark matter clumps (predicted)

Theory: N>>1000

Observation: N_{bright}~10

"Missing Satellites Problem"

Theory: N>>1000

Observation: Nbright~10

Klypin et al. 1999

Maybe... only the biggest clumps have stars?

Theory: N>>1000

Observation: N_{bright}~10

Klypin et al. 1999

Maybe... only the biggest clumps have stars?

Theory: N>>1000

Observation: Nbright~10

Bullock et al. 2000

Maybe... only the biggest clumps have stars?

Theory: N>>1000

Observation: N_{bright}~10

Bullock et al. 2000

1. Predict dark matter mass in each clump

2. Measure dark matter mass in each dwarf galaxy

3. Compare

Typical dwarf galaxy: about 5 million stars

Use the mighty Keck telescope to measure speeds of the stars -- how much mass?

Packed with Dark Matter

Motions of stars $=> \sim 500$ times more dark matter than visible!

Predicted clumps are too dense to host any satellite

The theory is broken?

The Milky Way's bright satellites as an apparent failure of ACDM

Michael Boylan-Kolchin, *† James S. Bullock and Manoj Kaplinghat Center for Cosmology, Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, CA 92697, USA

10 November 2011

10 November 2011

The Milky Way's bright satellites as an apparent failure of ΛCDM

Michael Boylan-Kolchin,*† James S. Bullock and Manoj Kaplinghat

Center for Cosmology, Department of Physics and Astronomy, 4129 Reines Hall, University of California, Irvine, CA 92697, USA

10 November 2011

10 November 2011

Maybe Cold Dark Matter is not so simple?

standard dark matter density profile (predicted) Radius DM Density $(10^{-22} \text{ g/cm}^3)^{-0.1}$ 0.01 (~I Hydrogen atom/cm³) 1,500 15,000 Radius (light years)

standard dark matter density profile (predicted) Radius DM Density $(10^{-22} \text{ g/cm}^3)^{-0.1}$ data data from galaxy 0.01 rotation curves

I,500 I5,000 Radius (light years)

Rotation speed 60 (km/s) 0

Flores & Primack 94

Composition of the Cosmos

Normal Matter

5%

Cold Dark Matter 25%

Dark Energy 70%

What do we really know?

5%

Cold Dark Matter 25%

Dark Energy 70%

Normal Matter 5%

Normal Matter 5%

25%

25%

Matches all large-scale data:

- Single particle.
- Only gravity.
- No other interaction.
- Mass > 10% proton mass

25%

Matches all large-scale data:

- Single (lightest) particle.
- Only gravity.
- No other interaction (weak).
- Mass > 10% proton mass

Reasonably well motivated

Matches all large-scale data:

- Single particle.
- Only gravity.
- No other interaction.
- Mass > 10% proton mass

Could it be more complicated?

Elastic scattering with: $\sigma/m \sim 1 \text{ cm}^2/g \sim (\text{neutron-neutron scattering})$

Scattering rate:

$$\Gamma = \rho_{\rm dm} \left(\frac{\sigma}{m}\right) v_{\rm rms}$$

Simulating Self-interacting Dark Matter

250 million lt yrs

Standard CDM

Self-Interacting CDM $\sigma/m = 1 \text{ cm}^2/\text{g}$

Simulating Self-interacting Dark Matter

250 million lt yrs

Identical large-scale structure

Standard CDM

Self-Interacting CDM $\sigma/m = 1 \text{ cm}^2/\text{g}$

Standard CDM

Self-Interacting CDM $\sigma/m = 1 \text{ cm}^2/\text{g}$

Lower central densities,
in line with observations.Standard CDMSelf-Interacting CDM
 $\sigma/m = 1 \text{ cm}^2/\text{g}$

Standard CDM

Self-Interacting CDM

Rocha et al. 12; Peter et al. 12

Normal Matter

5%

This piece of the pie is very interesting...

DRIVE-BY TRUCKERS

Maybe this one is too...

Thanks.

James Bullock @jbprime

Not just star streams: new galaxies!

100 degrees of sky

Probably ~100's more faint dwarfs to be discovered

