
1

HIPACC Summer School
July 20, 2011

Alan Calder (alan.calder@stonybrook.edu)
Sean Couch (smc@flash.uchicago.edu)

Many, many others!

Explosive Astrophysics with Flash

2

Outline

Introducing Flash
Components of Flash
Running a simulation with Flash

Simulating with Flash
Block Structured AMR
System Requirements
Verification and Validation: definitions and methods
Case studies with Flash
Issues relevant to performing quality simulations.

Sample nuclear astrophysics problems.
2-d cellular detonation
1-d flame
2-d white dwarf detonation

Introducing Flash

Flash has been under development since 1997 at the Flash Center for
Computational Science at the University of Chicago.

Many, many developers.
Current developers: Anshu Dubey (group leader), John Bachan,
Sean Couch, Chris Daley, Milad Fatenejad , Norbert Flocke , Carlo
Graziani, Shravan Gopal , Cal Jordan, Dongwook Lee, Dean
Townsley, Klaus Weide.

Past major developers: Katie Antypas, Alan Calder, Jonathan
Dursi, Robert Fisher, Kevin Olson, Timur Linde, Tomek Plewa, Paul
Ricker, Katherine Riley, Andrew Siegel, Dan Sheeler, Frank
Timmes, Natasha Vladimirova, Greg Weirs, Mike Zingale.

Documentation
http://flash.uchicago.edu/site/flashcode/user_support

3

What is Flash?

4

Flash is composed of units (code modules) that are combined to
construct a code for a particular application.

Flash is written principally in Fortran, with some C and Python. The
physics units are in Fortran.

A setup script performs the steps to construct the code for an
application. It processes information in configuration scripts for a
particular problem and for the units. It also takes arguments.

Flash applications include
Nuclear astrophysics
Cosmology
Fluid dynamics
High energy density physics

5

The FLASH Code

Cellular detonation

Compressed turbulence

Helium burning on neutron stars

Richtmyer-Meshkov instability

Laser-driven shock instabilities
Nova outbursts on white dwarfs Rayleigh-Taylor instability

Flame-vortex interactions

Gravitational collapse/Jeans instability

Wave breaking on white dwarfs

Shortly: Relativistic accretion onto NS

Orszag/Tang MHD
vortex

Type Ia Supernova

Intracluster interactions

Magnetic
Rayleigh-Taylor

The FLASH code
1. Parallel, adaptive-mesh simulation code
2. Designed for compressible reactive flows
3. Solves reactive Euler equations using the PPM
4. Included self-gravity
5. Newly-implemented HED capabilities
6. Newly-implemented MHD capabilities.
7. Scales and performs well.
8. Is available on the web: http://flash.uchicago.edu

Flash Infrastructure Capabilities

6

Configuration (setup)
Mesh Management

PARAMESH- block structured AMR
Chombo- patch based AMR
Uniform grid

Parallel I/O
HDF 5
PnetCDF
Fortran

Monitoring
Performance monitoring
Verification testing

Unit
Regression

Flash Physics

7

Flash Units:
Hydrodynamics, MHD, RHD
Material equations of state
Nuclear physics and other source terms
Gravity- applied and self-gravitating
Material properties
Cosmology
High energy density

Particles
Lagrangian tracers
Active (massive)

Example: Cellular Detonation Problem

8

Nuclear astrophysics example : a cellular detonation.

Problem described in Timmes et al. ApJ 543 938 (2000)

Running Flash I

9

Move to the project directory
cd /project/projectdirs/training/HIPACC_2011/calder/

Unpack the tar file
tar xzvf FLASH4-alpha

Move to the directory in which the code resides
cd FLASH4-alpha

Run the setup script to set up the cellular detonation problem
./setup Cellular -auto -site=hopper.nersc.gov

Move into the newly-created object directory and compile the code
cd object
make

Running Flash I

10

Important note: One can set many parameters at setup time to
tailor the simulation for the architecture, etc.

An example is maxblocks, which sets the maximum number of
blocks per processor element. Recall Katie Antypas’s point about
the memory per core decreasing from Franklin to Hopper. Must
account for thiis!

./setup Cellular -auto -site=hopper.nersc.gov -
objdir=obj_cellular2 -maxblocks=200

More on estimating the memory utilization later.

Performance Example

11

Adaptive Mesh Refinement

AMR seeks to minimize computational expense by adding resolution
elements only as needed to resolve features in the flow.

Flash uses a block-structured approach to AMR.

The simulation domain is divided into a series of logically-Cartesian
blocks with the resolution set by the number of blocks in a region of
physical space.

The number of blocks changes (adapts) via a parent-child relationship.

The mesh package (e.g. PARAMESH)
Manages the creation of grid blocks
Builds and maintains the tree structure that tracks the spatial
relationship between blocks
Distributes blocks among available processors
Handles inter-block and inter-processor communication.
Tracks physical boundaries and enforces boundary conditions 12

Adaptive Mesh Refinement

13

Adaptive Mesh Refinement

14

Adaptive Mesh Refinement

15

Example Block

16From Fryxell et al. ApJS 131 273 (2000)

Example Domain

17From Fryxell et al. ApJS 131 273 (2000)

Subcycling- Zingale & Dursi
http://xxx.lanl.gov/abs/astro-

ph/0310891

Morton Space-filling Curve

18From Fryxell et al. ApJS 131 273 (2000)

Flux Conservation at Block Boundaries

19From Fryxell et al. ApJS 131 273 (2000)

Refinement Criteria

Default is to look at the magnitude of 2nd derivative for specified
quantities (e.g. density and pressure).

As Ann mentioned, there can be sharp features (edge of star) that are
not critical. One can also use locations, values of certain variables, etc.

Best description I’ve heard: “black art.”

Key is to test!

20

Initial Conditions

Very important- When one constructs initial conditions, one writes a
routine to initialize the blocks.

Typical uniform mesh codes perform a loop stuffing arrays over the
whole domain. Initializing a block requires querying its location and
initialize the variables accordingly. This process can be difficult to
conceptualize.

For this Summer School, we will look at three setups relevant to
simulating Type Ia supernovae

cellular detonation
1-d deflagration
2-d detonation in a white dwarf.

Homework assignment: Modify the cellular detonation setup to instead
simulate a 1-d deflagration. (Details below).

21

System Requirements for Flash

Compiler for Fortran (F90) and C.

Installed copy of the Message Passing Interface (MPI)

Installed packages for I/O, Hierarchical Data Format (HDF) or Parallel
NetCDF (PnetCDF). There is a Fortran I/O option, but your mileage will
vary.

Flash is distributed with the PARAMESH AMR library included. For
Chombo AMR, one must have the Chombo library included.

For the implicit Diffuse and Hypre solvers, one must have the Hypre
library installed.

GNU make utility.

Python 2.2 or later for the setup script.
22

Running Flash II

23

Move into or create the run directory (usually in the scratch space)
mkdir 20110712_cellular
cd 20110712_cellular

Copy the required files into the run directory
cp …/FLASH4-alpha_release/object/SpeciesList.txt .
cp …/FLASH4-alpha_release/object/helm_table.dat .
cp …/FLASH4-alpha_release/object/flash.par .
cp …/FLASH4-alpha_release/object/flash4 .

Copy or create a run script in the run directory
vi (or emacs) hopper.run (example next slide)

Submit the job to the queue:
qsub hopper.run

Monitor the job as you please:
qstat –u username

Example run script for Hopper

24

Example run script:

#PBS -N cellular01
#PBS -q debug
#PBS -l mppwidth=12
#PBS -l walltime=0:29:00
#PBS -e output.$PBS_JOBID.err
#PBS -o output.$PBS_JOBID.out

cd $PBS_O_WORKDIR

echo Starting `date`

aprun -n 12 ./flash4

echo Ending `date`

Operator Splitting

25

The different modules operating on the state are strung together via
Strang spliitting, a fractional step method, in which the operators act
on parts of one time step.

Consider advection + reaction:

Want to solve combined problem:

Solve via

where

From R. LeVeque in “Computational Methods or Astrophysical Fluid Flow”

Dt/2

Dt/2

Dt

Driver Routine Illustrating Strang Splitting

26

do dr_nstep = dr_nbegin, dr_nend

call Hydro(blockCount, blockList, &
dr_simTime, dr_dt, dr_dtOld, dr_fSweepDir)

call RadTrans(blockCount, blockList, dr_dt, pass=1)
call Diffuse(blockCount, blockList, dr_dt, pass=1)
call Driver_sourceTerms(blockCount, blockList, dr_dt, pass=1)
call ravity_potentialListOfBlocks(blockCount,blockList)

call Hydro(blockCount, blockList, &
dr_simTime, dr_dt, dr_dtOld, dr_rSweepDir)

call RadTrans(blockCount, blockList, dr_dt, pass=2)
call Diffuse(blockCount, blockList, dr_dt, pass=2)
call Driver_sourceTerms(blockCount, blockList, dr_dt)

call Gravity_potentialListOfBlocks(blockCount,blockList)

end do

Finite Volume Methods

27

Euler equations :

Conserved quantities:

Volume average

Volume

as volume average of take

From Zingale et al. 2002

Integral form of Euler
equations :

Finite Volume Methods

28

In finite volume methods, the average value of the unknown is
given by

Where xi+1/2, xi-1/2 are the positions of the left, right edges of the
zone.

One performs a reconstruction (piecewise constant, linear,
parabolic, …) to get f(x) and then one integrates that.

Parabolic example is Simpson’s rule (seen for integration)

Area of i+1/2th subinterval

Simpson’s Rule

Approximate area of each
subinterval by area under a
parabola passing through
points f(xi), f(xi+1/2),f(xi+1)

29

Finite Volume Hydrodynamics Methods

Divide the domain into zones the interact with fluxes
30

Godunov Method

The original Godunov method solved the Riemann problem at the
boundaries between zones using the average values 31

Piecewise Linear Godunov Methods

Piecewise linear methods perform a linear interpolation.
Higher-order methods exist. PPM is Piecewise-Parabolic Method

32

Riemann Problem: Shock Tube

Initial conditions: a discontinuity in density and pressure

33

Riemann Problem: Shock Tube

World diagram for Riemann problem

34

Riemann Problem: Shock Tube

PPM has special algorithms for these features

35

Contact Discontinuity Detection

36

Density profile
that will trigger
special algorithm

From Fryxell, et al. 2000

Contact Steepening Process

37

From Fryxell, et al. 2000

Contact Discontinuity w/ steepening

38

From Fryxell, et al. 2000

Contact Discontinuity w/o steepening

39

From Fryxell, et al. 2000

Intermission

40

V&V Vocabulary

Verification- Determining that the implementation accurately represents
the conceptual description of the model.

Quantify error.
Approach is a systematic refinement study (space and time).

Validation- Determining the degree to which a model is an accurate
representation of the real world.

Test key elements (modules) and integrated code.
Compare to actual experiments (quantify error).

Calibration- process performed to improve the agreement between
simulation and experiment. Not validation!

Prediction- use of the code or model for an application for which it has
not been validated.

41

Verification and Validation

Verification: “solving the equations right”
Validation: “solving the right equations”

From Calder, et al. 2002

Our V&V Methodology

Choose V&V tests/problems for particular code modules e.g.
hydrodynamics. Test integrated code also if possible.

Verification test problems
Unit tests
Investigate convergence of error with resolution
Investigate error in secondary modules e.g. EOS
Regularly re-verify with nightly/weekly automated tests

Validation problems
Quantify measurements in experiment and simulation
Quantify error and uncertainty in experiment and simulation
Resolution study (verification-type tests)

Note: astrophysics is largely prediction.

43

Verifiability: The New Test Suite

Flash test suite automatically runs set of verification tests

Essential for identifying bugs unintentionally introduced

New test suite released with FLASH3 so users can monitor
their own research problems and performance

test parameters easily modified through GUI
handles unit tests, compilation tests, comparison tests
automatically uploads test suite data to benchmarks database

Green light indicates all
runs were successful

Date of run

Platform

Floating statistics box gives
immediate overview of results

Red light indicates 1 or more
tests failed

44

Test Suite Performance History

The test suite adds the ability to upload selected test log
files to the database to track daily code performance.

History of 2D and 3D Sedov Problems Details of 2D History

45

Verification Test: Sod Shock Tube

Demonstrates expected 1st order convergence of error

46

Verification Test: Isentropic Vortex

Demonstrates expected 2nd order convergence of error, but….

47

Sod Tube W/ AMR

Demonstrates expected 1st order convergence of error, but note that the
imperfect mesh refinement criteria degrades the solution!

48

Rayleigh-Taylor Instabilities

g

Lighter fluid

2.5-5 % sound speed with highest
magnitude near the interface

Denser fluid

Multi-mode velocity perturbation:Density schematic:

49

Multi-mode Rayleigh-Taylor

Organized by G. Dimonte (Oct. 1998)

Purpose – to determine if the t2 scaling law holds for the growth of the
RT mixing layer, and if so, to determine the value of a

simulation - experiment comparisons
inter-simulation comparisons

hb,s = ab,s gAt2, where A = (r 2 - r 1)/ (r 2 + r 1)

Definition of standard problem set (D. Youngs)

Dimonte et al. Phys. Fluids 16 1668 (2004)

“a-Group” Consortium

50

Multi-mode Rayleigh-Taylor: 2-d Simulation

51

Multi-mode Rayleigh-Taylor: 3-d Simulation

Horizontally Averaged Density

Modes 32-64 perturbed

52

Multi-mode Rayleigh-Taylor: Inverse Cascade

Bubbles of the lighter fluid in the denser fluid

t = 7.00 sec t = 14.75 sec

53

Multi-mode Rayleigh-Taylor

Density (g/cm3) at t = 14.75 sec

Rendering of
Mixing Zone

54

Multi-mode R-T Experimental LIF Image

It looks similar to the simulation…..

55

Multi-mode R-T Simulated LIF Image

It looks similar to the experiment…..

56

Multi-mode Rayleigh-Taylor

FLASH Simulation

abubble = 0.021

aspike = 0.026

57

Multi-mode Rayleigh-Taylor

Experiment

abubble = 0.052

aspike = 0.058

58

Single-mode 3-D Rayleigh-Taylor

Density (g/cc)4 8 16 32 64 128

l (grid points) t = 3.1 sec
256

59

Flash Exercises

Set up and run the cellular detonation problem. Visualize the results
with VisIt.

Investigate differences between hydrodynamics solvers for the case of
the Kelvin-Helmholtz instability.

Two SN Ia related problems- thermonuclear flame and a detonation in
a white dwarf.

60

Thermonuclear Flame Setup

61

Homework assignment: Starting with the Cellular detonation problem
setup, modify it to simulate a deflagration.

Hints:
What resolution?
How is a deflagration different from a detonation? More on this in
the next lecture.
Only two files to modify:
Simulation_initBlock.F90

flash.par

Will need to use the (explicit) diffusion module. Do so with an
option to the setup command.
-with-unit=physics/Diffuse/DiffuseFluxBased

White Dwarf Detonation Setup

Example of setting up a white dwarf model with a detonation.

Hydro + burning + self-gravity.

Test: Turn off burning. How long will the code hold the model steady?

Note that there may be issues!

Name of setup is SnDet.
./setup SnDet -2d -auto -nxb=16 -nyb=16 +cylindrical

-objdir=obj_SnDet

Problem directories are in source/Simulation/SimulationMain

62

63

…and that leads us to

QUESTIONS AND DISCUSSION

