
1

HIPACC Summer School
July 20, 2011

Alan Calder    (alan.calder@stonybrook.edu)
Sean Couch       (smc@flash.uchicago.edu)

Many, many others!

Explosive Astrophysics with Flash
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Introducing Flash

Flash has been under development  since 1997 at the Flash Center for 
Computational Science at the University of Chicago. 

Many, many developers.
Current developers: Anshu Dubey (group leader), John Bachan, 
Sean Couch, Chris Daley, Milad Fatenejad , Norbert Flocke , Carlo 
Graziani, Shravan Gopal , Cal Jordan, Dongwook Lee, Dean 
Townsley, Klaus Weide.

Past major developers: Katie Antypas, Alan Calder, Jonathan 
Dursi, Robert Fisher, Kevin Olson, Timur Linde, Tomek Plewa, Paul 
Ricker, Katherine Riley, Andrew Siegel, Dan Sheeler, Frank 
Timmes, Natasha Vladimirova, Greg Weirs, Mike Zingale. 

Documentation
http://flash.uchicago.edu/site/flashcode/user_support
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What is Flash?
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Flash is composed of units (code modules) that are combined to 
construct a code for a particular application. 

Flash is written principally in Fortran, with some C and Python. The 
physics units are in Fortran.

A setup script performs the steps to construct the code for an 
application. It  processes information in configuration scripts for a 
particular problem and for the units. It also takes arguments.

Flash applications include
Nuclear astrophysics
Cosmology
Fluid dynamics
High energy density physics
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The FLASH Code

Cellular detonation

Compressed turbulence

Helium burning on neutron stars

Richtmyer-Meshkov instability

Laser-driven shock instabilities
Nova outbursts on white dwarfs Rayleigh-Taylor instability

Flame-vortex interactions

Gravitational collapse/Jeans instability

Wave breaking on white dwarfs

Shortly: Relativistic accretion onto NS

Orszag/Tang MHD
vortex

Type Ia Supernova

Intracluster interactions

Magnetic
Rayleigh-Taylor

The FLASH code
1. Parallel, adaptive-mesh simulation code
2. Designed for compressible reactive flows
3. Solves reactive Euler equations using the PPM
4. Included self-gravity
5. Newly-implemented HED capabilities
6. Newly-implemented  MHD capabilities.
7. Scales and performs well.
8. Is available on the web: http://flash.uchicago.edu



Flash Infrastructure Capabilities
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Configuration (setup)
Mesh Management

PARAMESH- block structured AMR
Chombo- patch based AMR
Uniform  grid

Parallel I/O
HDF 5
PnetCDF
Fortran

Monitoring
Performance monitoring
Verification  testing 

Unit
Regression



Flash Physics
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Flash Units:
Hydrodynamics, MHD, RHD
Material equations of state
Nuclear physics and other source terms
Gravity- applied and self-gravitating
Material properties
Cosmology
High energy density

Particles
Lagrangian tracers
Active (massive)



Example: Cellular Detonation Problem
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Nuclear astrophysics example : a cellular detonation. 

Problem described in  Timmes et al. ApJ 543 938 (2000)



Running Flash I
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Move to the project directory
cd /project/projectdirs/training/HIPACC_2011/calder/

Unpack the tar file 
tar xzvf FLASH4-alpha

Move to the directory in which the code resides
cd FLASH4-alpha

Run the setup script to set up the cellular detonation problem
./setup Cellular -auto -site=hopper.nersc.gov 

Move into the newly-created object directory and compile the code
cd object
make



Running Flash I
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Important note: One can set many parameters at setup time to 
tailor the simulation for the architecture, etc. 

An example is maxblocks, which sets the maximum number of 
blocks per processor element. Recall Katie Antypas’s point about 
the memory per core decreasing from Franklin to Hopper. Must 
account for thiis!

./setup Cellular -auto -site=hopper.nersc.gov -
objdir=obj_cellular2 -maxblocks=200

More on estimating the memory utilization later.



Performance Example
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Adaptive Mesh Refinement

AMR seeks to minimize computational expense by adding resolution 
elements only as needed to resolve features in the flow.

Flash uses a block-structured approach to AMR.

The simulation domain is divided into a series of logically-Cartesian 
blocks with the resolution set by the number of blocks in a region of 
physical space.

The number of blocks changes (adapts) via a parent-child relationship.

The mesh package (e.g. PARAMESH) 
Manages the creation of grid blocks
Builds and maintains the tree structure that tracks the spatial 
relationship between blocks
Distributes blocks among available processors
Handles inter-block and inter-processor communication.
Tracks physical boundaries and enforces boundary conditions 12



Adaptive Mesh Refinement
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Adaptive Mesh Refinement
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Adaptive Mesh Refinement
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Example Block

16From  Fryxell et al. ApJS 131 273 (2000)



Example Domain

17From  Fryxell et al. ApJS 131 273 (2000)

Subcycling- Zingale & Dursi
http://xxx.lanl.gov/abs/astro-

ph/0310891



Morton Space-filling Curve

18From  Fryxell et al. ApJS 131 273 (2000)



Flux Conservation at Block Boundaries

19From  Fryxell et al. ApJS 131 273 (2000)



Refinement Criteria

Default is to look at the magnitude of 2nd derivative for specified 
quantities (e.g. density and pressure). 

As Ann mentioned, there can be sharp features (edge of star) that are 
not critical. One can also use locations, values of certain variables, etc.

Best description I’ve heard: “black art.”

Key is to test!
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Initial Conditions

Very important- When one constructs initial conditions, one writes a 
routine to initialize the blocks. 

Typical uniform mesh codes perform a loop stuffing arrays over the 
whole domain. Initializing a block requires querying its location and 
initialize the variables accordingly. This process can be difficult to 
conceptualize.

For this Summer School, we will look at three setups relevant to 
simulating Type Ia supernovae

cellular detonation
1-d deflagration
2-d detonation in a white dwarf.

Homework assignment: Modify the cellular detonation setup to instead 
simulate a 1-d deflagration. (Details below).
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System Requirements for Flash

Compiler for Fortran (F90) and C. 

Installed copy of the Message Passing Interface (MPI)

Installed packages for I/O, Hierarchical Data Format (HDF) or Parallel 
NetCDF (PnetCDF). There is a Fortran I/O option, but your mileage will 
vary.

Flash is distributed with the PARAMESH AMR library included. For 
Chombo AMR, one must have the Chombo library included.

For the implicit Diffuse and Hypre solvers, one must have the Hypre
library installed. 

GNU make utility.

Python 2.2 or later for the setup script.
22



Running Flash II
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Move into or create the run directory (usually in the scratch space)
mkdir 20110712_cellular
cd 20110712_cellular 

Copy the required files into the run directory
cp …/FLASH4-alpha_release/object/SpeciesList.txt .
cp …/FLASH4-alpha_release/object/helm_table.dat .
cp …/FLASH4-alpha_release/object/flash.par .
cp …/FLASH4-alpha_release/object/flash4 .

Copy or create a run script in the run directory
vi (or emacs) hopper.run (example next slide)

Submit the job to the queue: 
qsub hopper.run

Monitor the job as you please: 
qstat –u username



Example run script for Hopper

24

Example run script:

#PBS -N cellular01
#PBS -q debug
#PBS -l mppwidth=12
#PBS -l walltime=0:29:00
#PBS -e output.$PBS_JOBID.err
#PBS -o output.$PBS_JOBID.out

cd $PBS_O_WORKDIR

echo Starting `date`

aprun -n 12 ./flash4

echo Ending `date`



Operator Splitting
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The different modules operating on the state are strung together via 
Strang spliitting, a fractional step method, in which the operators act 
on parts of one time step.

Consider advection + reaction:

Want to solve combined problem:

Solve via

where

From R. LeVeque in “Computational Methods or Astrophysical Fluid Flow”

Dt/2

Dt/2

Dt



Driver Routine Illustrating Strang Splitting
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do dr_nstep = dr_nbegin, dr_nend

call Hydro( blockCount, blockList, &
dr_simTime, dr_dt, dr_dtOld, dr_fSweepDir)  

call RadTrans(blockCount, blockList, dr_dt, pass=1)
call Diffuse(blockCount, blockList, dr_dt, pass=1) 
call Driver_sourceTerms(blockCount, blockList, dr_dt, pass=1)
call ravity_potentialListOfBlocks(blockCount,blockList)

call Hydro( blockCount, blockList, &
dr_simTime, dr_dt, dr_dtOld, dr_rSweepDir) 

call RadTrans(blockCount, blockList, dr_dt, pass=2)
call Diffuse(blockCount, blockList, dr_dt, pass=2) 
call Driver_sourceTerms(blockCount, blockList, dr_dt)

call Gravity_potentialListOfBlocks(blockCount,blockList)

end do



Finite Volume Methods
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Euler equations :

Conserved quantities:

Volume average

Volume

as volume average of take

From Zingale et al. 2002

Integral form of Euler 
equations :



Finite Volume Methods
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In finite volume methods, the average value of the unknown is 
given by 

Where xi+1/2, xi-1/2 are the positions of the left, right edges of the 
zone.

One performs a reconstruction (piecewise constant, linear, 
parabolic, …) to get f(x) and then one integrates that.

Parabolic example is Simpson’s rule (seen for integration)



Area of i+1/2th subinterval

Simpson’s Rule

Approximate area of each 
subinterval by area under a 
parabola passing through 
points f(xi), f(xi+1/2),f(xi+1)
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Finite Volume Hydrodynamics Methods

Divide the domain into zones the interact with fluxes
30



Godunov Method

The original Godunov method solved the Riemann problem at the 
boundaries between zones using the average values 31



Piecewise Linear Godunov Methods

Piecewise linear methods perform a linear interpolation.
Higher-order methods exist. PPM is Piecewise-Parabolic Method

32



Riemann Problem: Shock Tube

Initial conditions: a discontinuity in density and pressure
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Riemann Problem: Shock Tube

World diagram for Riemann problem

34



Riemann Problem: Shock Tube

PPM has special algorithms for these features
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Contact Discontinuity Detection
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Density profile 
that will trigger 
special algorithm

From Fryxell, et al. 2000



Contact Steepening Process
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From Fryxell, et al. 2000



Contact Discontinuity w/ steepening
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From Fryxell, et al. 2000



Contact Discontinuity w/o steepening
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From Fryxell, et al. 2000



Intermission
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V&V Vocabulary

Verification- Determining that the implementation accurately represents 
the conceptual description of the model.

Quantify error.
Approach is a systematic refinement study (space and time).

Validation- Determining the degree to which a model is an accurate 
representation of the real world.

Test key elements (modules) and integrated code.
Compare to actual experiments (quantify error).

Calibration- process performed to improve the agreement between 
simulation and experiment. Not validation!

Prediction- use of the code or model for an application for which it has 
not been validated.
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Verification and Validation

Verification: “solving the equations right”
Validation: “solving the right equations”

From Calder, et al. 2002



Our V&V Methodology 

Choose V&V tests/problems for particular code modules e.g. 
hydrodynamics. Test integrated code also if possible.

Verification test problems
Unit tests
Investigate convergence of error with resolution
Investigate error in secondary modules e.g. EOS
Regularly re-verify with nightly/weekly automated tests

Validation problems
Quantify measurements in experiment and simulation
Quantify error and uncertainty in experiment and simulation
Resolution study (verification-type tests)

Note: astrophysics is largely prediction.
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Verifiability: The New Test Suite

Flash test suite automatically runs set of verification tests

Essential for identifying bugs unintentionally introduced

New test suite released with FLASH3 so users can monitor 
their own research problems and performance

test parameters easily modified through GUI
handles unit tests, compilation tests, comparison tests  
automatically uploads test suite data to benchmarks database

Green light indicates all 
runs were successful

Date of run

Platform

Floating statistics box gives 
immediate overview of results

Red light indicates 1 or more 
tests failed
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Test Suite Performance History

The test suite adds the ability to upload selected test log
files to the database to track daily code performance.

History of 2D and 3D Sedov Problems Details of 2D History
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Verification Test: Sod Shock Tube

Demonstrates expected 1st order convergence of error
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Verification Test: Isentropic Vortex

Demonstrates expected 2nd order convergence of error, but….
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Sod Tube W/ AMR

Demonstrates expected 1st order convergence of error, but note that the 
imperfect mesh refinement criteria degrades the solution!

48



Rayleigh-Taylor Instabilities

g

Lighter fluid

2.5-5 % sound speed with highest 
magnitude near the interface

Denser fluid

Multi-mode velocity perturbation:Density schematic:
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Multi-mode Rayleigh-Taylor

Organized by G. Dimonte (Oct. 1998)

Purpose – to determine if the t2 scaling law holds for the growth of the 
RT mixing layer, and if so, to determine the value of a

simulation - experiment comparisons
inter-simulation comparisons

hb,s = ab,s gAt2,  where  A = (r 2 - r 1)/ (r 2 + r 1)

Definition of standard problem set (D. Youngs)

Dimonte et al. Phys. Fluids 16 1668 (2004)

“a-Group” Consortium
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Multi-mode Rayleigh-Taylor: 2-d Simulation
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Multi-mode Rayleigh-Taylor: 3-d Simulation

Horizontally Averaged Density

Modes 32-64 perturbed
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Multi-mode Rayleigh-Taylor: Inverse Cascade 

Bubbles of the lighter fluid in the denser fluid

t = 7.00 sec t = 14.75 sec
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Multi-mode Rayleigh-Taylor 

Density (g/cm3) at t = 14.75 sec

Rendering of
Mixing Zone
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Multi-mode R-T Experimental LIF Image

It looks similar to the simulation…..
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Multi-mode R-T Simulated LIF Image

It looks similar to the experiment…..
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Multi-mode Rayleigh-Taylor 

FLASH Simulation

abubble = 0.021

aspike = 0.026
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Multi-mode Rayleigh-Taylor 

Experiment

abubble = 0.052

aspike = 0.058
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Single-mode 3-D Rayleigh-Taylor

Density (g/cc)4 8 16 32 64 128

l (grid points) t = 3.1 sec
256
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Flash Exercises

Set up and run the cellular detonation problem. Visualize the results 
with VisIt.

Investigate differences between hydrodynamics solvers for the case of 
the Kelvin-Helmholtz instability.

Two SN Ia related problems- thermonuclear flame and a detonation in 
a white dwarf.
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Thermonuclear Flame Setup
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Homework assignment: Starting with the Cellular detonation problem 
setup, modify it to simulate a deflagration.

Hints:
What resolution?
How is a deflagration different from a detonation? More on this in 
the next lecture.
Only two files to modify:
Simulation_initBlock.F90 

flash.par

Will need to use the (explicit) diffusion module. Do so with an 
option to the setup command.
-with-unit=physics/Diffuse/DiffuseFluxBased



White Dwarf Detonation Setup

Example of setting up a white dwarf model with a detonation.

Hydro + burning + self-gravity. 

Test: Turn off burning. How long will the code hold the model steady?

Note that there may be issues!

Name of setup is SnDet.
./setup SnDet -2d -auto -nxb=16 -nyb=16 +cylindrical 

-objdir=obj_SnDet

Problem directories are in  source/Simulation/SimulationMain
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…and that leads us to

QUESTIONS AND DISCUSSION


