
Thermodynamics is a funny subject. The first time you go through it, 
you don't understand it at all. The second time you go through it, you 
think you understand it, except for one or two small points. The third 
time you go through it, you know you don't understand it, but by that 
time you are so used to it, it doesn't bother you any more.
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J I N A

Let’s start by establishing our conventions and nomenclature on abundances.
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An isotope can be characterized by the dimensionless integers 
Z = number of protons = atomic charge
N = number of neutrons
A = number of nucleons = atomic number

The Avogadro number, from the 2006 CODATA values of the fundamental 
physical constants,

NA = 6.02214179± 0.00000030× 1023 1/mole

is the number of “entities” in one mole.When an individual entity has mass m 
in grams, the atomic mass or molar mass for a collection of the entities is

W = mNA g/mol

So, the total mass of a collection of entities is the number of moles times the 
molar mass.



The mass of a single isotopic k is

mk = Nmn + Zmp + Z(1− f)me −∆m

= Nmn + Zmp + Z(1− f)me −
B
c2

g

where mn is the neutron rest mass, mp is the proton rest mass, me is the 
physical electron mass, f is the ionization fraction (0 for a neutral atom, 1 for 
full ionization), !m is the mass deficit, and B is the nuclear binding energy. 

Sometimes terms of the form [15.73 Z5/3 - 13.6 Z eV] are added to 
approximate the electronic binding energy. Such terms are usually negligible 
and we will ignore such contributions. The molar mass of the isotope is 
Wk  = mk NA.

Its common to set the atomic number A equal to the atomic  mass W. 
For example, for neutral 16O one typically sees A=16 and W=16 g/mol. 

This approximation neglects the neutron-proton mass difference, 
the electron masses, and the nuclear binding energy contribution.

The difference between W and A, the mass excess, for any given isotope is 
typically  ≲ 0.5% with a maximum of about ~2%. 

From our equation for the mass of an isotope, the atomic mass for neutral 
16O is 15.99491 g/mol. 

The atomic mass unit (amu) is defined as 1/12 the mass of an unbound atom 
of 12C at rest and in its ground state. We thus define the molar mass to be 
W=12.0 g/mol. An amu then has a molar mass of W = 1 g/mol. Hence, 

1 amu = 1/NA = 1.660538782± 0.000000083× 10−24 g

One can then say NA has units of [1/g] but care must be taken to apply the 
implicit mol/g conversion to other quantities of interest. For example, in this 
system of units, the molar mass W is dimensionless.

Mixing the [1/mol] and [1/g] systems of units can cause confusion!

The number density n, mass density ", and molar abundance Y for a pure 
composition is 

n =
ρNA

W
cm−3 ρ =

nW
NA

g cm−3 Y =
n

ρNA
=

1
W

mol/g

For a mixture of k isotopes, the molar abundance Yi and mass fraction Xi of 
species i as

Yi =
ni

ρNA
mol/g Xi = WiYi =

ρi

ρ

where ni is the number density and "i is the mass density of species i.
Mass conservation of the mixture is expressed as

k�

i=1

Xi =
k�

i=1

WiYi =
k�

i=1

ρi

ρ
= 1



Quantities used as input into numerous physics modules include the averages 

Similar to the molar abundance Yi, one defines the free electron abundance 
variable Ye  of a fully ionized plasma

W =
�

niWi�
ni

=
1

�k
i=1 Yi

g/mol

A =
�

niAi�
ni

= W
k�

i=1

YiAi

Z =
�

niZi�
ni

= W
k�

i=1

YiZi

Ye =
ne

ρNA
=

Zn

ρNA
=

Z
W

=
k�

i=1

ZiYi mol/g

Interlude
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Let’s start by assuming complete ionization amongst a mixture of 
non-interacting photons, ions, electrons and positrons at temperature T (in K) 
and mass density " (in g cm-3), but allow for arbitrary degrees of relativity 
and degeneracy.

Under these conditions, the mixture has a scalar pressure P (in erg cm-3), 
specific internal energy E (in erg g-1), and specific entropy S (in erg g-1 K-1).

The Input into a typical equation of state in the temperature T, density ", 
average atomic mass W, and average charge Z.

The Output, at minimum, should consist of P, E, and S along with their 
first partial derivatives with respect to the input variables T, ", A, Z.

A typical equilibrium stellar equation of state assumes

Thermal photons: Prad =
aT 4

3
Erad =

3Prad

ρ

Srad =
Prad/ρ + Erad

T
=

4aT 3

3

where the 2006 CODATA  recommended value of the radiation constant a 
is calculated from the measured value of the gas constant R:

a =
4σ

c
=

8π5R4

15h3c3N4
A



Ideal ions: Pion = NionkT Eion =
3
2

Pion

ρ
Nion =

NAρ

W

where

Sion =
Pion/ρ + Eion

T
+ ηionkBNion/ρ

ηion = log

�
Nionh3

�
NA

2πWkBT

�3/2
�

The entropy equation, the Sackur-Tetrode equation, is an expression for a 
monatomic classical ideal gas which incorporates the uncertainty principle 
when counting microstates for S = kB ln #.

where p is the momentum, $ is the kinetic energy, and µe is the electron 
chemical potential.

Electron-Positron gas: the electron number density, P, E, and S are

Sele =
1
T

(Pele/ρ + Eele + µene/ρ)

ne =
� ∞

0
ne(p) dp =

8π

h3

� ∞

0

p2dp
exp[�/kT − µe/kT ] + 1

Pe =
1
3

�
ne(p) p · v d3p =

1
3

� ∞

0
ne(p) p ∂�/∂p dp

=
8π

3h3

� ∞

0

p3∂�/∂p dp
exp[�/kT − µe/kT ] + 1

Ee =
1
ρ

� ∞

0
ne(p) �(p) dp =

8π

3h3ρ

� ∞

0

p3∂�/∂p dp
exp[�/kT − µe/kT ] + 1

Using 

�(p) = mec
2
��

1 + (p/mec)2 − 1
�

v(p) = ∂�/∂p =
p

me

�
1 +

�
p

mec

�2
�−1/2

η = µ/(kT ) β = kT/(mec
2)

where % is the electron degeneracy parameter and & is the relativity parameter, 
the thermodynamic integrals may be written as

x = �/(mec
2)

ne =
8π
√

2
h3

m3
ec

3β3/2

� ∞

0

x1/2 (1 + (1/2)βx)1/2 (1 + βx) dx

ex−η + 1

Pe =
16π
√

2
3h3

m4
ec

5β5/2

� ∞

0

x3/2 (1 + (1/2)βx)3/2 dx

ex−η + 1

Ee =
8π
√

2
h3

m3
ec

3β5/2

� ∞

0

x3/2 (1 + (1/2)βx)1/2 (1 + βx) dx

ex−η + 1

Sele =
Pele/ρ + Eele

T
+ ηekBne/ρ



Finally, using the Fermi-Dirac function Fk(%, &) 

the electron and positron number densities may be written

Npos =
8π
√

2
h3

me
3 c3 β3/2

�
F1/2 (−η − 2/β,β) + β F3/2 (−η − 2/β,β)

�

Fk(η, β) =
∞�

0

xk (1 + (1/2) β x)1/2

ex−η + 1
dx

Nele =
8π
√

2
h3

m3
e c3 β3/2

�
F1/2(η,β) + βF3/2(η,β)

�

and the pressures, energies are entropies may be written as

Pele =
16π
√

2
3h3

m4
e c5 β5/2

�
F3/2(η, β) + 1/2 β F5/2(η, β)

�

Ppos =
16π
√

2
3h3

m4
e c5 β5/2

�
F3/2 (−η − 2/β,β) + 1/2 β F5/2 (−η − 2/β,β)

�

Eele =
8π
√

2
ρh3

m4
e c5 β5/2

�
F3/2(η,β) + β F5/2(η,β)

�

Epos =
8π
√

2
ρh3

m4
e c5 β5/2

�
F3/2 (−η − 2/β,β) + β F5/2 (−η − 2/β,β)

�

Sele =
Pele/ρ + Eele

T
+

ηkNele

ρ

Spos =
Ppos/ρ + Epos

T
+

(η + 2/β)kNele

ρ

The only unknown in these integrals is the normalized chemical potential %. 
For complete ionization, the number density of free electrons is

and self-consistency requires

which, via a root-find, determines %. 

Nele,matter = Nele −Npos

Nele,matter = Z Nion =
Z

A
NA ρ The Fermi-Dirac functions and their derivatives can be done by brute force 

integration, Simpson integration on nested grids in tandem with integral 
transformations (Cloutman1989), or quadrature integration with an elegant 
choice of the ordinates and weights (Aparicio 1998).
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Timmes exact in 64-bit arithmetic, fundamental constants entered to their 2006 
recommended precision, reference point for comparisons.

Iben Eggleton, Faulkner & Flannery approximation for the Fermi-Dirac 
integrals, positrons not included, finite differences for some derivatives.

Weaver Divine approximation so only Fermi integrals appear, cubic spline 
interpolant on tables or 3rd-order expansions, analytic derivatives.

Nadyozhin polynomial expansions in 5 regions, transitions between regions are
continuous, smooth, and consistent, analytic partial derivatives.

Arnett hashed table lookup and bicubic interpolant for thermodynamics and
derivatives or 3rd-order expansions, all integrals and root-finds off-line.

Helmholtz hashed table lookup and thermodynamically consistent biquintic
Hermite interpolant for P, E, S and derivatives, table from Timmes EOS.

You may download these stellar eos codes from cococubed.asu.edu :
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Inactive: partial ionization, Coulomb interactions, and onset of ion degeneracy.
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The first law of thermodynamics

is an exact differential, so the three Maxwell relations

should be numerically satisfied if the eos is thermodynamically consistent.

Thermodynamic inconsistency appears as the unphysical buildup of S or T 
during simulations of what should be an adiabatic flow.

Models which are sensitive to the entropy may suffer inaccuracies if
thermodynamic consistency is violated over long enough time-scales.

∂E

∂T

�����
ρ

= T
∂S

∂T

�����
ρ

P = ρ2 ∂E

∂ρ

�����
T

+ T
∂P

∂T

�����
ρ

−∂S

∂ρ

�����
T

=
1
ρ2

∂P

∂T

�����
ρ

dE = TdS +
P

ρ2
dρ
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Here is a live example of running eosfxt ...

Interlude

The Helmholtz free energy F, which has (T,") as the natural variables, is

With mixed partials commuting and the pressure and entropy defined as

The thermodynamic consistency relations are satisfied.

F = E − TS dF = −SdT +
P

ρ2
dρ

P = ρ2 ∂F

∂ρ

�����
T

S = −∂F

∂T

�����
ρ

∂2F

∂T∂ρ
=

∂2F

∂ρ∂T

The Helmholtz EOS 



Thermodynamic consistency is guaranteed for the interpolant if the 
thermodynamics are evaluated in this order: P first, S second, and E third.

This procedure is almost too robust! The interpolated values may be horribly 
inaccurate, but they will be thermodynamically consistent.

Consider any interpolating function for F whose mixed partials commute.

!"#$%&'

()
*(
!&
+&!
&(
,*
(!

!"#$-&'

!"#$#.&'

/011$2 34(567803 8$91869/7

Suppose one wants to define a function on the interval [xi,xi+1] that has the 
following properties:

where the Ci are arbitrary constants. The lowest order polynomial that could 
satisfy these four conditions is a cubic 
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f(xi) = C1 f(xi+1) = C2

f �(xi) = C3 f �(xi+1) = C4

f(x) = a + bx + cx2 + dx3

The function and its derivative values determine the coefficients a, b, c, and 
d in terms of the Ci. The two polynomials multiplying the resultant Ci are the 
cubic Hermite basis functions

and the interpolating cubic Hermite polynomial is 

ψ0(z) = 2z3 − 3z2 + 1

ψ1(z) = z3 − 2z2 + z

z =
x− xi

xi+1 − xi

H3(z) = fi ψ0(z) + fi+1 ψ0(1− z)

+
∂f

∂x

�����
i

(xi+1 − xi) ψ1(z) − ∂f

∂x

�����
i+1

(xi+1 − xi) ψ1(1− z)

where

To use the cubic Hermite interpolant one must tabulate the function f(x) and 
its first derivative df(x)/dx at the grid points.

The derivative of the cubic Hermite polynomial is given by the derivative of 
the basis functions.

In return for this investment, the values of the function and its first derivative 
are reproduced exactly at the grid points.

The values of the function and the first derivative change continuously as the 
interpolating point moves from one grid cell to the next. 



Imposing second derivative constraints on the interval [xi,xi+1]

and applying the the same procedure as above to the quintic polynomial 
yields the three quintic Hermite basis functions:

f(xi) = C1 f(xi+1) = C2

f �(xi) = C3 f �(xi+1) = C4

f ��(xi) = C5 f ��(xi+1) = C6

ψ0(z) = −6z5 + 15z4 − 10z3 + 1

ψ1(z) = −3z5 + 8z4 − 6z3 + z

ψ2(z) =
1
2
(−z5 + 3z4 − 3z3 + z2)

and the interpolating quintic Hermite polynomial is

The one dimensional quintic polynomial is extended to two dimensions
by interpolating each of the basis functions in the second dimension.

H5(z) = fi ψ0(z) + fi+1 ψ0(1− z)

+
∂f

∂x

�����
i

(xi+1 − xi) ψ1(z) − ∂f

∂x

�����
i+1

(xi+1 − xi) ψ1(1− z)

+
∂2

f

∂x2

�����
i

(xi+1 − xi)2 ψ2(z) +
∂2

f

∂x2

�����
i+1

(xi+1 − xi)2 ψ2(1− z)

The resulting biquintic interpolation function for rectangle bounded by 
"i ' " < "i+1 and Ti ' T < Ti+1 is given by 

where

... and so on for the rest of the terms.

H5(ρ, T ) =
+F
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ρ− ρi
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F l,k
T =

∂F

∂T

����
l,k

(Tj+1 − Tj) F l,k
TT =

∂2F

∂T 2

����
l,k

(Tj+1 − Tj)2

This bicubic Hermite interpolant forms the heart of the Helmholtz EOS.

To use it, one must tabulate the Helmholtz free energy F and 8 of its partial 
derivatives as a function of density and temperature.  

In return for this investment, the values of the function, first partial, and 
second partial derivatives are reproduced exactly on grid points and change 
continuously as the interpolating point moves from cell to cell.

The e+e- Helmholtz free energy table is constructed with the Timmes EOS, 
which was designed for maximum accuracy and consistency.

The Helmholtz free energy table is constructed with A=1 and Z=1 (pure 
hydrogen) so that Ye=1, but is valid for any composition because simple 
scaling relations exist for Ye under the assumption of complete ionization. 



All the necessary pieces for a table driven equation of state are now in place; 
1) a method which assures thermodynamic consistency, 
2) a suitable interpolating polynomial, and 
3) an electron-positron equation of state table with precise entries. 

How accurate, 
how thermodynamically consistent, and 
how fast is the Helmholtz equation of state?
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Three different density-temperature grids were considered in order to 
assess the accuracy as a function of the table size. The ``nominal grid'' 
consists of 10 points per decade in both the density and temperature.
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Thermodynamic consistency is, as expected, at the floating point limit 
for any choice of the grid density.

TABLE 1

Relative Timings in Serial Modea

Type of Temperature and Density Sweep
EOS Ordered Random Entropy

Timmes 106 106 106
Helmholtz 0.8 0.9 0.8

Arnett 1.0 1.1 1.1

a CPU time per call for each EOS operating in serial mode on the nominal grid. All values
have been normalized to the Arnett EOS for ordered sweeps in serial mode (see Timmes
& Arnett 1999 for a discussion of the tabular Arnett EOS). The table entries are generally
independent of the machine architecture and compiler options used.

TABLE 2

Relative Timings in Pipeline Modea

Type of Temperature and Density Sweep
EOS Ordered Random Entropy

Timmes 106 106 106
Helmholtz 0.2 0.3 0.3

Arnett 0.4 0.5 0.5

a CPU time per call for each EOS operating in pipeline mode, with a pipe size of 104, on
the nominal grid. All values have been normalized to the Arnett EOS for ordered sweeps in
serial mode (see Timmes & Arnett 1999 for a discussion of the tabular Arnett EOS). The
table entries are generally independent of the machine architecture and compiler options
used.



 Here is a live example of running helmeos ...

The Helmholtz equation of state has a maximum error of 10-6 in any 
quantity, displays thermodynamic consistency at the floating point limt, and 
executes faster than any known stellar equation of state. It is the stellar EOS 
of choice in many hydrodynamic and stellar evolution codes. 

Interlude Key issues we have not yet discussed: interactions between the electrons, 
positrons, nuclei, and photons (aka “Coulomb corrections”), phase 
transitions (e.g., crystallization) partial ionization of atoms, and degeneracy 
among the nuclei or nucleons (aka, the nuclear equation of state).
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Stars are a fundamental building block of astronomy and astrophysics. 
The breadth of the demand for a new research and education tool in 
computational stellar astrophysics led to our construction of the general, 
modern stellar evolution library MESA (Modules for Experiments in Stellar 
Astrophysics) that combines the following advantages:

1.Openess: should be open to any researcher, both to advance the pace of 
scientific discovery, but also to share the load of updating physics, 
fine-tuning, and further development.

2. Modularity: should provide independent, reusable modules.

3. Wide applicability: should be capable of calculating the evolution of stars 
in a wide range of environments, including low and massive stars, binaries, 
accreting, mass-losing stars, early and advanced phases of evolution etc. 
This will enable multi-problem physics validation. 

4. Modern techniques: should employ modern numerical approaches, 
including high-order interpolation schemes, advanced AMR, simultaneous 
operator solution; should support well-defined interfaces for related 
applications, e.g., atmospheres, wind simulations, nucleosynthesis 
simulations, and hydrodynamics.

5. Microphysics: should allow for up-to-date, wide-ranging, flexible, and 
modular micro-physics.

6. Performance: should parallelize on present and future shared-memory, 
multi-core/thread and possibly hybrid architectures so that performance 
continues to grow within the new computational paradigm.
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The MESA equation of state combines (for the first time) several efforts that 
offer the current best physics in their regimes of applicability.

HIPACC Stellar EOS Projects

•Run the executable eosfxt/eosfxt.exe and examine the output.
Open the source code for eosfxt.f90 and find the physics we discussed. 
Change eosfxt.f90 source to different conditions, compile, link, and run.

•Run the eoshelm/helmholtz.exe test case and examine the output.
Open the helmholtz.f90 source code and find the interpolation we 
discussed.

•Open the eoshelm/drive_helmholtz.exe source and examine what it does. 
Run the executable and use the provide gnuplot file pressure_contour.gplt 
to visualize the results.

•Modify drive_helmholtz.f90 and pressure_contour.gplt to plot the adiabatic 
index (1 in the T-" plane; does it ever drop below 4/3, what does that mean?

•Visit the MESA website http://mesa.sourceforge.net/


