Compact Object Mergers

Eliot Quataert (UC Berkeley)

Overview

- Diversity of Mergers & Outcomes
- WD-WD:
 - R Cor Bor *s? Type Ia SNe? AIC of $WD \rightarrow NS$?
- NS-NS, NS-BH
 - Gamma-ray Bursts & Gravitational Wave Astrophysics

Stability of Mass Transfer

- Mass transfer begins when stellar $R \sim R_L \equiv Roche Lobe$
- Subsequent evolution depends on how R* & a of orbit change
 - stable mass transfer? ... or ... merger on ~ a dynamical time?
- If M_{tot} & J_{tot} conserved: (2 = star (1 = stat losing gaining
 - unstable transfer (merger!): $M_2 \gtrsim M_1$
- GR: Close Binaries w/ Compact Objects: $\frac{dJ_{tot}}{dt} = \dot{J}_{GW} < 0$
 - $\gamma = 5/3$ polytropes: unstable if $M_2 \gtrsim (2/3) M_1$ but ... mass loss, direct impact, tides, ...

mass)

mass)

• NS-NS, BH-NS? unstable for plausible mass ratios

Diversity of Mergers & Why We Care

• WD-WD

- $M \ge M_{CH}$: Type I a supernovae? AIC of WD \rightarrow NS?
- $M \leq M_{CH}$: weird stars (e.g., R Cor Bor, extreme He *)

NS-NS & NS-BH

- most likely kHz gravitational wave source (LIGO,VIRGO)
- short duration gamma-ray bursts
- source of some n-rich heavy nuclei in nature (r-process)

• WD-NS

• unusual GRB? unusual SNe? less well explored/constrained

WD-WD Mergers: What do we Know Empirically?

SPY

Rates uncertain (~ la from pop synthesis); no several σ detection of system w M_{tot} > M_{CH}

WD-WD Mergers: M ≥ M_{CH}

(the story due to Ken Shen)

Remnant of WD-WD Merger

Key Evolutionary Phases (C/OWDs)

I. Dynamical Disruption (~ min) (C ignition possible in some cases?)

If *s survive merger ...

- 2. Viscous evolution of remnant (~hrs-year)
 - 3. Cooling of the remnant (~ 10^{4-5} yr)

Key Physics (pre-explosion): MHD, EOS, Opacity, ... Computational Challenge: Merger, then ~ Multi-D Stellar Structure

WD-WD Mergers: M ≥ M_{CH}

(the story due to Ken Shen)

Josiah Schwab

- 2. Viscous evolution (~hours-year) → spherical remnant w/ significant thermal support at large radii
 - 3. Cooling of the remnant (~10⁴⁻⁵ yr): AIC or 1a?

NS-NS Mergers: What do we Know Empirically?

3 known NS-NS binaries in our galaxy will merge in a Hubble time (no BH-NS systems known)

 $\dot{N}_{
m merge}\simeq 10^{-5}-3 imes 10^{-4}\,{
m yr^{-1}}~{
m per}\,{
m MW}\,{
m galaxy}$ (Kalogera et al. 2004)

NS-NS & NS-BH Mergers

NS-NS Merger

Key Evolutionary Phases

- 1. Dynamical Disruption + Tidal Tails (~ ms)
- 2. Possible hypermassive NS; <-mom transport
 (B-fields) → collapse to BH (~ 10s ms)
 - 3. Viscous evolution of disk (~ 0.1-1 sec)
 - 4. Disk 'Explosion' + Fallback (\geq sec)

GW Signal

EM Signal

Key Physics: GR, MHD, weak interactions, V transport, nuclear htg,

The Evolution of the Remnant Disk

ang momentum conservation \rightarrow disk spreads (& cools)

ID time-dependent Models (α-viscosity; realistic EOS, v-microphysics)

$$\dot{M} \sim M_{\odot} \, s^{-1}$$

 $\tau_{\rm photons} \gg 1; \ \tau_{\nu} \sim 1$

→ only neutrino cooling impt

Accretion onto a Central BH

red = high density blue = low density

Hawley

multi-D MHD but no realistic physics for NS debris

The Little Bang: Late-time Disk 'Explosion'

Initially T ~ few MeV; disk mostly free neutrons After ~ sec, R ~ 500 km & T \leq 0.5 MeV free n & p recombine to He fusion (~ 7 Mev/nucl) unbinds disk

Ejected Mass ~ 1/2 Initial Disk ~ 10^{-2} M_o, at v ~ 0.1 c Neutron-rich matter (Y_e ~ 0.3)

Late-Time Activity from Fall-back Accretion?

But at least partially suppressed by r-process heating in ejecta

NS-NS & NS-BH Mergers

Short(ish)-Duration GRB

Key Evolutionary Phases

- I. Dynamical Disruption + Tidal Tails (~ ms)
- 2. Possible hypermassive NS; \ast -mom transport Signal (B-fields) \rightarrow collapse to BH (\sim 10s ms)

next

frontier

GW

EM

Signal

likely

detected

- 3. Viscous evolution of disk (~ 0.1-1 sec) (consistent w/ short GRB durations)
 - 4. Disk 'Explosion' + Fallback (\geq sec)

~ kHz GWs: a New Frontier in Compact Object Astrophysics

- Direct detection of GWs: unique insights into compact objects
 - masses, spins, orientation to line of sight, ...
 - no bias re. photons escaping to observer!
 - probes of nuclear physics, relativity,
- Critical to connect these GW detections to wealth of EM data on similar (same?) sources

LIGO reached design sensitivity in ~ 2006: h ~ $\Delta L/L$ ~ 10⁻²¹ (no detections; as expected)

~ kHz GWs: a New Frontier in Compact Object Astrophysics

- Direct detection of GWs: unique insights into compact objects
 - masses, spins, orientation to line of sight, ...
 - no bias re. photons escaping to observer!
 - probes of nuclear physics, relativity,
- Critical to connect these GW detections to wealth of EM data on similar (same?) sources

Advanced LIGO & Virgo in ~ 2015 ~10x sensitivity $\rightarrow 10^3$ x volume/rate

> worldwide effort: Geo600 (Germany), LCGT (Japan), LIGO Australia (??), ...

NS-NS Mergers: What do we Know Empirically?

3 known NS-NS binaries in our galaxy will merge in a Hubble time (no BH-NS systems known)

 $\dot{N}_{\text{merge}} \simeq 10^{-5} - 3 \times 10^{-4} \, \text{yr}^{-1} \, \text{per} \, \text{MW} \, \text{galaxy}$

 $m Advanced\,LIGO: \sim 20-10^3~yr^{-1}~\sim 100~yr^{-1}$ 'reasonable' (Kalogera et al. 2004)

Advanced LIGO/VIRGO: NS-NS Mergers at ~ 200 Mpc BH-BH Mergers at ~ Gpc

Most Promising Isotropic EM Counterpart

Heating of NS Debris in Compact Object Mergers

~ 10⁻³-10⁻² M_☉ unbound during dynamical phases of merger & disk explosion (v~0.1c)

Initial thermal energy lost to adiabatic expansion

Luminosity of Unbound Ejecta Depends on Heating

Heating due to decay of n-rich nuclei created via r-process

emission peaks when t_{diff} ≤ t_{exp} t ~ I day for NS ejecta

Most Promising Isotropic EM Counterpart

R-process Powered Transient

colors, etc. hard to predict bec. insufficient atomic line info for relevant nuclei!

NS-NS & NS-BH Mergers: Computational Challenges

Astrophysical Observable

GWs: GR (M?)HD Sims of Merger & Collapse to BH; Realistic EOS; r-process htg to correctly model ejecta

GRB: GR MHD Sims of disk & jet; weak interactions; nuclear heating; V transport;

EM Counterpart to GW: 3D RT problem given ejecta mass, kinematics from merger & disk sims

Key Evolutionary Phases

- I. Dynamical Disruption + Tidal Tails (~ ms)
- 2. Possible hypermassive NS; ∢-mom transport
 (B-fields) → collapse to BH (~ 10s ms)
 - 3. Viscous evolution of disk (~ 0.1-1 sec)

EM Signal

GW

4. Disk 'Explosion' + Fallback (\geq sec)

Diversity of Mergers & Why We Care

• WD-WD

- $M \ge M_{CH}$: Type I a supernovae? AIC of WD \rightarrow NS?
- $M \leq M_{CH}$: weird stars (e.g., R Cor Bor, extreme He *)

NS-NS & NS-BH

- most likely kHz gravitational wave source (LIGO,VIRGO)
- short duration gamma-ray bursts
- source of some n-rich heavy nuclei in nature (r-process)

• WD-NS

• unusual GRB? unusual SNe? less well explored/constrained