
Bohmian mechanics and cosmology

Ward Struyve

Rutgers University, USA

1



Outline

I. Introduction to Bohmian mechanics

II. Bohmian mechanics and quantum gravity

III. Semi-classical approximation to quantum gravity based on Bohmian mechanics

IV. Quantum-to-classical transition in inflation theory

2



I. BOHMIAN MECHANICS

(a.k.a. pilot-wave theory, de Broglie-Bohm theory, . . . )

• De Broglie (1927), Bohm (1952)

• Particles moving under influence of the wave function.

• Dynamics:

i~∂tψt(x) =

(
−

N∑
k=1

~2

2mk
∇2
k + V (x)

)
ψt(x) , x = (x1, . . . ,xN)

dXk(t)

dt
= vψtk (X1(t), . . . , XN(t))

where

vψk =
~
mk

Im
∇kψ

ψ
=

1

mk
∇kS, ψ = |ψ|eiS/~
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• Double Slit experiment:
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•Quantum equilibrium:

- for an ensemble of systems with wave function ψ

- distribution of particle positions ρ(x) = |ψ(x)|2

Quantum equilibrium is preserved by the particle motion (= equivariance), i.e.

ρ(x, t0) = |ψ(x, t0)|2 ⇒ ρ(x, t) = |ψ(x, t)|2 ∀t

Agreement with quantum theory in quantum equilibrium.
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• Effective collapse of the wave function

– Branching of the wave function: ψ → ψ1 + ψ2 ψ1ψ2 = 0

– Effective collapse ψ → ψ1 (ψ2 does no longer effect the motion of the config-

uration X)
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•Wave function of subsystem: conditional wave function

Consider composite system: ψ(x1, x2, t), (X1(t), X2(t))

Conditional wave function for system 1:

χ(x1, t) = ψ(x1, X2(t), t)

The trajectory X1(t) satisfies

dX1(t)

dt
= vχ(X1(t), t)
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•Wave function of subsystem: conditional wave function

Consider composite system: ψ(x1, x2, t), (X1(t), X2(t))

Conditional wave function for system 1:

χ(x1, t) = ψ(x1, X2(t), t)

The trajectory X1(t) satisfies

dX1(t)

dt
= vχ(X1(t), t)

Collapse of the conditional wave function

Consider measurement:

– Wave function system: ψ(x) =
∑

i ciψi

(ψi are the eigenstates of the operator that is measured)

– Wave function measurement device: φ(y)

– During measurement:

Total wave function: ψ(x)φ(y)→
∑

i ciψi(x)φi(y)

Conditional wave function: ψ(x)→ ψi(x)
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•Classical limit:

ẋ =
1

m
∇S ⇒ mẍ = −∇(V + Q)

ψ = |ψ|eiS/~, Q = − ~2

2m

∇2|ψ|
|ψ|

= quantum potential

Classical trajectories when |∇Q| � |∇V |.
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•Non-locality:

dXk(t)

dt
= vψtk (X1(t), . . . , XN(t))

→ Velocity of one particle at a time t depends on the positions of all the other

particles at that time, no matter how far they are.
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Illustration of non-locality (Rice, AJP 1996)

Consider first a single particle
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Illustration of non-locality (Rice, AJP 1996)

Consider the entangled state | ↖〉| ↘〉 + | ↙〉| ↗〉
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Illustration of non-locality (Rice, AJP 1996)

Consider the entangled state | ↖〉| ↘〉 + | ↙〉| ↗〉
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Illustration of non-locality (Rice, AJP 1996)

Consider the entangled state | ↖〉| ↘〉 + | ↙〉| ↗〉

Non-local, but no faster than light signalling!
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• Extensions to quantum field theory

– Two natural possible ontologies: particles and fields. Particles seem to work

better for fermions, fields for bosons.

– Example: scalar field

Hamiltonian:

Ĥ =
1

2

∫
d3x

(
Π̂2 + (∇φ̂)2 + m2φ̂2

)
, [φ̂(x), Π̂(y)] = iδ(x− y)

Functional Schrödinger representation:

φ̂(x)→ φ(x) , π̂(x)→ −i
δ

δφ(x)

i
∂Ψ(φ, t)

∂t
=

1

2

∫
d3x

(
− δ2

δφ2
+ (∇φ)2 + m2φ2

)
Ψ(φ, t) .

Bohmian field φ(x) with guidance equation:

∂φ(x, t)

∂t
=
δS(φ, t)

δφ(x)

∣∣∣
φ=φ(x,t)

, Ψ = |Ψ|eiS

Similarly for other bosonic fields (see Struyve (2010) for a review):

electromagnetic field: Ψ(A), A(x), gravity: Ψ(g), g(x), . . .
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II. QUANTUM GRAVITY

Canonical quantization of Einstein’s theory for gravity:

g(3)(x)→ ĝ(3)(x)

In funcional Schrödinger picture:

Ψ = Ψ(g(3))

Satisfies the Wheeler-De Witt equation and constraints:

i
∂Ψ

∂t
= ĤΨ = 0

ĤiΨ = 0
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II. QUANTUM GRAVITY

Canonical quantization of Einstein’s theory for gravity:

g(3)(x)→ ĝ(3)(x)

In funcional Schrödinger picture:

Ψ = Ψ(g(3))

Satisfies the Wheeler-De Witt equation and constraints:

i
∂Ψ

∂t
= ĤΨ = 0

ĤiΨ = 0

Conceptual problems:

1. Problem of time: There is no time evolution, the wave function is static.

(How can we tell the universe is expanding or contracting?)

2. Measurement problem: We are considering the whole universe. There are no

outside observers or measurement devices.

3. What is the meaning of space-time diffeomorphism invariance? (The constraints

ĤiΨ = 0 only express invariance under spatial diffeomorphisms.)
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Bohmain approach

In a Bohmian approach we have an actual 3-metric g(3) which satisfies:

ġ(3) = vΨ(g(3))

This solves problems 1:

- We can tell whether the universe is expanding or not, whether it goes into a

singularity or not, etc.

- We can derive time dependent Schrödinger equation for conditional wave function.

E.g. suppose gravity and scalar field. Conditional wave functional for scalar field

Ψs(φ, t) = Ψ(φ, g(3)(t))

is time-dependent if g(3)(t) is time-dependent.

It also solves problem 2. Does it solve problem 3?

For more details, see: Goldstein & Teufel, Callender & Weingard, Pinto-Neto, . . .
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III. SEMI-CLASSICAL GRAVITY

Apart from the conceptual difficulties with the quantum treatment of gravity, there

are also technical problems: finding solutions to Wheeler-DeWitt equation, doing

perturbation theory, etc. Therefore one often resorts to semi-classical approximations:

→Matter is treated quantum mechanically, as quantum field on curved

space-time.

E.g. scalar field:

i∂tΨ(φ, t) = Ĥ(φ, g)Ψ(φ, t)

→Grativity is treated classically, described by

Gµν(g) =
8πG

c4
〈Ψ|T̂µν(φ, g)|Ψ〉

Gµν = Rµν −
1

2
Rgµν
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Is there a better semi-classical approximation based on Bohmian

mechanics?

In Bohmian mechanics matter is described by Ψ(φ) and actual scalar field φB(x, t).

Proposal for semi-classical theory:

Gµν(g) =
8πG

c4
Tµν(φB, g)
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Is there a better semi-classical approximation based on Bohmian

mechanics?

In Bohmian mechanics matter is described by Ψ(φ) and actual scalar field φB(x, t).

Proposal for semi-classical theory:

Gµν =
8πG

c4
Tµν(φB)

→ In general doesn’t work because ∇µT
µν(φB) 6= 0!

(In non-relativistic Bohmian mechanics energy is not conserved.)
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Is there a better semi-classical approximation based on Bohmian

mechanics?

In Bohmian mechanics matter is described by Ψ(φ) and actual scalar field φB(x, t).

Proposal for semi-classical theory:

Gµν =
8πG

c4
Tµν(φB)

→ In general doesn’t work because ∇µT
µν(φB) 6= 0!

(In non-relativistic Bohmian mechanics energy is not conserved.)

Similar situation in scalar electrodynamics:

Quantum matter field described by Ψ(φ) and actual scalar field φB(x, t). Semi-

classical theory:

∂µF
µν = jν(φB)

→ In general doesn’t work because ∂νj
ν(φB) 6= 0!
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Semi-classical approximation to non-relativistic quantum mechanics

• System 1: quantum mechanical. System 2: classical

Usual approach (mean field):

i∂tψ(x1, t) =

(
− ∇

2
1

2m1
+ V (x1, X2(t))

)
ψ(x1, t)

m2Ẍ2(t) = 〈ψ|F2(x1, X2(t))|ψ〉 =

∫
dx1|ψ(x1, t)|2F2(x1, X2(t)) , F2 = −∇2V

→ backreaction through mean force
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Semi-classical approximation to non-relativistic quantum mechanics

• System 1: quantum mechanical. System 2: classical

Usual approach (mean field):

i∂tψ(x1, t) =

(
− ∇

2
1

2m1
+ V (x1, X2(t))

)
ψ(x1, t)

m2Ẍ2(t) = 〈ψ|F2(x1, X2(t))|ψ〉 =

∫
dx1|ψ(x1, t)|2F2(x1, X2(t)) , F2 = −∇2V

→ backreaction through mean force

Bohmian approach:

i∂tψ(x1, t) =

(
− ∇

2
1

2m1
+ V (x1, X2(t))

)
ψ(x1, t)

Ẋ1(t) = vψ1 (X1(t), t) , m2Ẍ2(t) = F2(X1(t), X2(t))

→ backreaction through Bohmian particle
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• Prezhdo and Brookby (2001):

Bohmian approach yields better results than usual approach:
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•Derivation of Bohmian semi-classical approximation

Full quantum mechanical description:

i∂tψ(x1, x2, t) =

(
− ∇

2
1

2m1
− ∇

2
2

2m2
+ V (x1, x2)

)
ψ(x1, x2, t)

Ẋ1(t) = vψ1 (X1(t), X2(t), t) , Ẋ2(t) = vψ2 (X1(t), X2(t), t)

Conditional wave function χ(x1, t) = ψ(x1, X2(t), t) satisfies

i∂tχ(x1, t) =

(
− ∇

2
1

2m1
+ V (x1, X2(t))

)
χ(x1, t) + I(x1, t)

and particle two:

m2Ẍ2(t) = −∇2V (X1(t), x2)
∣∣∣
x2=X2(t)

−∇2Q(X1(t), x2)
∣∣∣
x2=X2(t)

→ Semi-classical approximation follows when I and −∇2Q are negligible

(e.g. when particle 2 is much heavier than particle 1)
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Bohmian semi-classical approximation to scalar quantum electrody-

namics

� Schrödinger equation for matter:

i∂tΨ(φ, t) = Ĥ(φ,A)Ψ(φ, t)

Guidance equation

φ̇ = vΨ(φ, t)

Classical Maxwell equations for with quantum correction:

∂µF
µν = jν+jνQ ,

Is consistent since: ∂µ(jµ + jµQ) = 0.

→Crucial in the derivation was that gauge was eliminated!

How to eliminate it in canonical quantum gravity?

(in this case: gauge = spatial diffeomorphism invariance).
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Bohmian semi-classical approximation to mini-superspace model

• Restriction to homogeneous and isotropic (FLRW) metrics and fields:

– Gravity: ds2 = dt2 − a(t)2dΩ2
3

– Matter: φ = φ(t)

Wheeler-DeWitt equation:

(HG + HM)ψ = 0 ,

HG =
1

4a2
∂a(a∂a) + a3VG , HM = − 1

2a3
∂2
φ + a3VM

Guidance equations:

ȧ = − 1

2a
∂aS , φ̇ =

1

a3
∂φS

• Semi-classical approximation:

i∂tψ = HMψ , φ̇ =
1

a3
∂φS

and Friedmann equation with quantum correction:

ȧ2

a2
=
φ̇2

2
+ VM + VG+Q
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IV. QUANTUM-TO-CLASSICAL TRANSITION IN INFLATION

THEORY

Cosmological perturbations

� Inflaton field: ϕ(x, η) = ϕ0(η) + δϕ(x, η)

Metric with scalar perturbations, in the longitudinal gauge:

ds2 = a2(η)
{

[1 + 2φ(η,x)] dη2 − [1− 2φ(η,x)] δijdx
idxj

}
,

� Gauge invariant Mukhanov-Sasaki variable which describes perturbations:

y ≡ a

[
δϕ +

ϕ′0
H
φ

]
,

with H = a′

a the comoving Hubble parameter. Its classical equation of motion is:

y′′ −∇2y − z′′

z
y = 0 (z = aϕ′0/H)

� So we have 3 variables: a, ϕ0 and y.

– a and ϕ0 are treated classically and independent of y

– y is quantized. The assumed quantum state Ψ(y) is the Bunch-Davies vacuum.

29



The quantum vacuum fluctuations give rise to

� the fluctuations in CMB

� to structures such as galaxies, clusters of galaxies, etc.
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The quantum vacuum fluctuations give rise to

� the fluctuations in CMB

� to structures such as galaxies, clusters of galaxies, etc.

However:

→ How does the vacuum state of the perturbations, which is homogeneous and

isotropic, gives rise to perturbations which are inhomogeneous and anisotropic?

→ How do the quantum fluctuations become classical fluctuations?
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According to standard quantum theory this can only be achieved by collapse of the

wave function. But collapse is supposed to happen upon measurement. But when

exactly does a measurement happen? Which processes count as measurements in

the early universe?

→Measurement problem!
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According to standard quantum theory this can only be achieved by collapse of the

wave function. But collapse is supposed to happen upon measurement. But when

exactly does a measurement happen? Which processes count as measurements in

the early universe?

→Measurement problem!

Possible solutions:

collapse theories (Sudarsky), many worlds, Bohmian mechanics
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According to standard quantum theory this can only be achieved by collapse of the

wave function. But collapse is supposed to happen upon measurement. But when

exactly does a measurement happen?

→Measurement problem

→ Is especially severe in cosmological context! Which processes count as measure-

ment in the early universe?

Possible solutions:

collapse theories (Sudarsky), many worlds, Bohmian mechanics

→ We illustrate the problem and possible solutions in the simple cases of

� a decaying atom

� the inverted harmonic oscillator

(For Bohmian treatment of the problem in inflation theory, see Pinto-Neto, Santos,

Struyve 2012)
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Decaying atom

Consider a decaying atom which emits a photon described by a spherically symmetric

wave function:
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Decaying atom

Consider a decaying atom which emits a photon described by a spherically symmetric

wave function:

With detectors:
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Decaying atom

Consider a decaying atom which emits a photon described by a spherically symmetric

wave function:

With detectors:

→ according to standard quantum theory collapse breaks the symmetry
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Bohmian description:

Without detectors:

With detectors:

→ actual particle breaks the symmetry
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Inverted harmonic oscillator (e.g. Albrecht et al. 1994)

Classical treatment

� Potential: V = −q2

2

� Equation of motion: q̈ = q

� Possible trajectories: q = Aet + Be−t
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Inverted harmonic oscillator (e.g. Albrecht et al. 1994)

Classical treatment

� Potential: V = −q2

2

� Equation of motion: q̈ = q

� Possible trajectories: q = Aet + Be−t

In phase space:

q = Aet + Be−t, p = Aet −Be−t

q ≈ p ≈ Aet for t� 1

⇒ squeezing
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Quantum mechanics

Squeezed state:

ψ(q, t) = N exp

(
− (B − iC)

2
q2 − i

B

2
t

)

N =

(
B

π

)1
4

, B =
1

cosh 2t
, C = tanh 2t

Note

∆q2 =
1

2B
, ∆p2 =

B

2
+
C2

2B

For t = 0 : ∆q2 = ∆p2 =
1

2
For t� 1 : ∆q2 ≈ ∆p2 � 1

→ Initially minimum uncertainty in q and p. However, both spread in time!

→ The wave function is not peaked around a classical trajectory!

How can it correspond to a classical system?
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Common classicality arguments

1. Commuting observables

Heisenberg operators (time evolution Ô(t) = eiĤtÔ(0)e−iĤt):

q̂(t) = Âet + B̂e−t , p̂(t) = Âet − B̂e−t

(with Â = 1
2 (q̂(0) + p̂(0)), B̂ = 1

2 (q̂(0)− p̂(0)))

For t� 1:

q̂(t) ≈ p̂(t) ≈ Âet

Hence

[q̂(t), p̂(t)] ≈ 0 ⇒ Classicality
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Common classicality arguments

1. Commuting observables

Heisenberg operators (time evolution Ô(t) = eiĤtÔ(0)e−iĤt):

q̂(t) = Âet + B̂e−t , p̂(t) = Âet − B̂e−t

(with Â = 1
2 (q̂(0) + p̂(0)), B̂ = 1

2 (q̂(0)− p̂(0)))

For t� 1:

q̂(t) ≈ p̂(t) ≈ Âet

Hence

[q̂(t), p̂(t)] ≈ 0 ⇒ Classicality

However

[q̂(t), p̂(t)] = i /≈ 0
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Similarly: free particle

Heisenberg operators:

x̂(t) = x̂(0) +
t

m
p̂(0) , p̂(t) = p̂(0)

For large t/m:

x̂(t) ≈ t

m
p̂(0)

Hence

[x̂(t), p̂(t)] ≈ 0 ⇒ Classicality

However

[x̂(t), p̂(t)] = i /≈ 0
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Similarly: free particle

Heisenberg operators:

x̂(t) = x̂(0) +
t

m
p̂(0) , p̂(t) = p̂(0)

For large t/m:

x̂(t) ≈ t

m
p̂(0)

Hence

[x̂(t), p̂(t)] ≈ 0 ⇒ Classicality

However

[x̂(t), p̂(t)] = i /≈ 0

A correct argument:

∆x(t)2 = ∆x(0)2 +
t

m

(
〈{x̂(0), p̂(0)}〉 − 〈x̂(0)〉〈p̂(0)〉

)
+
t2

m2
∆p(0)2

≈ ∆x(0)2 for small
t

m

⇒ No spreading for a very massive particle for short enough times.

45



2. Wigner distribution:

ρ(q, p, t) =
1√
πB
|ψ(q, t)|2 exp

(
− (p− Cq)2

B

)
→ |ψ(q, t)|2δ(p− q) for t� 1

→ Is not peaked around one particular classical trajectory

→ But:

- is positive (is usually not the case)

- satisfies Liouville equation dρ/dt = 0 (is usually not the case)

- quantum mechanical expectation values equal classical averages over ρ

However, this does not mean classical limit is achieved!
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3. WKB limit

With ψ = |ψ|eiS:
∂S

∂t
+

(∇S)2

2
+ V + Q = 0 ,

V = −q
2

2
, Q =

B

2
(1−Bq2)

For t� 1:
∂S

∂t
+

(∇S)2

2
+ V ≈ 0 ,

→ Formally same as classical Hamilton-Jacobi equation

But:

Does not imply we can assume a classical trajectory
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4. Decoherence

Decoherence due to coupling with other degrees of freedom may yield decompo-

sition of ψ into “classical wave packets”. Collapse may select one of these.

Where does the decoherence come from in inflation theory?

– Interactions between sub and super Hubble modes (which would show up when

treating the fluctuations up to second order).

– Interactions with the matter fields
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De Broglie-Bohm description description of the inverted oscillator

q̇ = ∇S ⇒ q̈ = FC + FQ

Classical force: FC = q

Quantum force: FQ = qB2

Ratio:
FQ
FC

= B2 → 0 for t� 1 → classical behaviour

More precisely:

q(t) ∼
√

e2t + e−2t

∼ et for t� 1

→ No appeal to decoherence!

→ If there is decoherence of the expected type, then this will not affect the clas-

sicality.
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