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I. BOHMIAN MECHANICS
(a.k.a. pilot-wave theory, de Broglie-Bohm theory, ...)

e De Broglie (1927), Bohm (1952)

e Particles moving under influence of the wave function.

e Dynamics:
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e Quantum equilibrium:
- for an ensemble of systems with wave function
- distribution of particle positions p(z) = |¢(x)|?

Quantum equilibrium is preserved by the particle motion (= equivariance), i.e.
plx,to) = [(z, to)) = plat)= [, Vi

Agreement with quantum theory in quantum equilibrium.



e Effective collapse of the wave function

— Branching of the wave function: 1 — ¥ + 1 P11Pg = 0

— Effective collapse 1) — 1)1 ()2 does no longer effect the motion of the config-
uration X)

/\t




e Wave function of subsystem: conditional wave function

Consider composite system: ©(xq, zo,t), (X1(t), Xo(t))

Conditional wave function for system 1:

x(w1,t) = (xy, Xo(t),1)

The trajectory X;(t) satisfies
dX(t)
dt

= v (X(t), 1)



e Wave function of subsystem: conditional wave function

Consider composite system: ©(xq, T2, t), (X1(t), Xo(t))

Conditional wave function for system 1:

x(w1,t) = (x1, Xo(t), 1)

The trajectory X (t) satisfies

Collapse of the conditional wave function
Consider measurement:
— Wave function system: () = > . c;i9);

(¢; are the eigenstates of the operator that is measured)
— Wave function measurement device: ¢(y)

— During measurement:

Total wave function: ¥(z)p(y) = >, civvi(x)pi(y)
Conditional wave function: 1 (x) — ;(x)



e Classical limit:

1
X = EVS = mx =—-V(V + Q)

Ve

_ iS/h .

= quantum potential

Classical trajectories when |VQ| < |V V.



e Non-locality:

dXi(t)
= V}f (X1(t),..., Xn(t))

— Velocity of one particle at a time ¢ depends on the positions of all the other

particles at that time, no matter how far they are.



lllustration of non-locality  (Rice, AJP 1996)

Consider first a single particle
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lllustration of non-locality  (Rice, AJP 1996)

Consider the entangled state | N\))| \\) + | v)| )
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Consider the entangled state | N\))| \\) + | v)| )
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lllustration of non-locality  (Rice, AJP 1996)

Consider the entangled state | N))| \,) + | )| /)
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Non-local, but no faster than light signalling!



e Extensions to quantum field theory

— Two natural possible ontologies: particles and fields. Particles seem to work
better for fermions, fields for bosons.
— Example: scalar field

Hamiltonian:
1 . ~ .
=3 [ ([ (V0P +nt®) . B0 Tiy) = 0x-y)
Functional Schrodinger representation:
0

$<X> — ¢(X> ) %(X> — _15¢(X>

OV(o, 1 5
i gf ) _ 5/d%; (—5752 + (Vo) + m2q52> (e, t).

Bohmian field ¢(x) with guidance equation:
Outxr) _ 55(6.1)
ot 0p(x) lo=o(x.t)

U = |[U]e"

Similarly for other bosonic fields (see Struyve (2010) for a review):
electromagnetic field: W(A), A(x), gravity: V(g), g(x),



II. QUANTUM GRAVITY

Canonical quantization of Einstein’s theory for gravity:
g% (a) — 99 (x)

In funcional Schrodinger picture:

v =W(g"?)
Satisfies the Wheeler-De Witt equation and constraints:
ENJ ~
= HU =0
(975

Hi\IJ:O



II. QUANTUM GRAVITY

Canonical quantization of Einstein’s theory for gravity:
g% (x) = G ()
In funcional Schrodinger picture:

U =w(g"?)

Satisfies the Wheeler-De Witt equation and constraints:

o~
v =0
Yot

HYV =0
Conceptual problems:
1. Problem of time: There is no time evolution, the wave function is static.

(How can we tell the universe is expanding or contracting?)

2. Measurement problem: We are considering the whole universe. There are no

outside observers or measurement devices.

3. What is the meaning of space-time diffeomorphism invariance? (The constraints

PA[Z'\IJ = 0 only express invariance under spatial diffeomorphisms.)



Bohmain approach

In a Bohmian approach we have an actual 3-metric ¢'®) which satisfies:

This solves problems 1:

- We can tell whether the universe is expanding or not, whether it goes into a

singularity or not, etc.

- We can derive time dependent Schrodinger equation for conditional wave function.

E.g. suppose gravity and scalar field. Conditional wave functional for scalar field

Vy(p,t) = W(e, g% (1))

is time-dependent if ¢®)(¢) is time-dependent.

It also solves problem 2. Does it solve problem 37

For more details, see: Goldstein & Teufel, Callender & Weingard, Pinto-Neto, ...



ITII. SEMI-CLASSICAL GRAVITY
Apart from the conceptual difficulties with the quantum treatment of gravity, there
are also technical problems: finding solutions to Wheeler-DeWitt equation, doing

perturbation theory, etc. Therefore one often resorts to semi-classical approximations:

— Matter is treated quantum mechanically, as quantum field on curved
space-time.
E.g. scalar field:
0,0 (¢, t) = H($, g)¥(¢, 1)

— Grativity is treated classically, described by

IrG

G/ﬂ/(g> — 7<\Ij|f1w(¢a g)‘\lj>

1
Gluy = RMV — iRgMV



Is there a better semi-classical approximation based on Bohmian

mechanics?

In Bohmian mechanics matter is described by W(¢) and actual scalar field ¢p(x,t).

Proposal for semi-classical theory:

8rG
G/W(Q) — 7Tuu(¢37 g)



Is there a better semi-classical approximation based on Bohmian

mechanics?

In Bohmian mechanics matter is described by W(¢) and actual scalar field ¢p(x,t).

Proposal for semi-classical theory:

JE
G = 7Tuu(¢3)

— In general doesn't work because V, 7" (¢p) # 0!

(In non-relativistic Bohmian mechanics energy is not conserved.)



Is there a better semi-classical approximation based on Bohmian

mechanics?

In Bohmian mechanics matter is described by W(¢) and actual scalar field ¢p(x,t).

Proposal for semi-classical theory:

JE
G = 7Tuu(¢3)

— In general doesn't work because V, 7" (¢p) # 0!

(In non-relativistic Bohmian mechanics energy is not conserved.)

Similar situation in scalar electrodynamics:
Quantum matter field described by W(¢) and actual scalar field ¢p(x,t). Semi-

classical theory:
O " = j"(ép)

— In general doesn't work because 9,j"(¢g) # 0!



Semi-classical approximation to non-relativistic quantum mechanics

e System 1: quantum mechanical. System 2: classical

Usual approach (mean field):

i@ﬂb(l’b t) = (—ﬁ + V(ﬂfl, XQ(t))) @D(xl, t)

2m1

moXo(t) = (V| Fa(ar, Xo(t)[0)) = /d$1\¢($1at)|2F2(9717Xz(t)>7 = —VyV

— backreaction through mean force



Semi-classical approximation to non-relativistic quantum mechanics

e System 1: quantum mechanical. System 2: classical

Usual approach (mean field):
. %
1at¢($17 t) — <_—1 + V($17 X2<t))) ¢<ZC1, t)

le

maXo(t) = (| Fa(xr, Xo(t))|¢)) = /dmll¢($1¢)|2F2($1»Xﬁ))7 [ =—=V5V
— backreaction through mean force

Bohmian approach:
2

i@ﬂb(ﬂfl, t) = (-l + V(l'l, X2<t))) ?ﬁ(.ﬁl)’l, t)

2m1
Xi(t) = v (X1(t),t),  maXs(t) = Fo(Xy(t), Xa(t))

— backreaction through Bohmian particle



e Prezhdo and Brookby (2001):

Bohmian approach yields better results than usual approach:

1.0

Scattering Probability
o o o
™~ o o

o
N

bols’ . - . -
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FIG. I. The time-dependent scattering probability Py,
Eq. (16), for the model problem detailed in the text obtained
for the incident energy of 20 kJ/mol using exact quantum
dynamics (circles), mean-field dynamics (dashed curve), and
the Bohmian quantum-classical technique (solid curve).



e Derivation of Bohmian semi-classical approximation

Full quantum mechanical description:

, V2 V3
10 (1, Ta, ) = (——1 — —= +V(=, 5132)) V(T1, Ta, t)

2m1 2m2

Xi(t) = oy (Xa(t), Xo(t),8),  Xa(t) = vy (X (t), Xo(t), 1)

Conditional wave function x(x1,t) = ©(x1, Xs(t),t) satisfies
. Vi
10 x(x1,t) = <_2—m11 + V(xq, Xg(t))) x(x1,t) + (2, 1)

and particle two:

mgXQ(t) = —VQ‘/(Xl(t), I‘Q) —VQQ(XlOf)’ 372)

19=Xo(t) r9=Xo(t)

— Semi-classical approximation follows when I and —V () are negligible

(e.g. when particle 2 is much heavier than particle 1)



Bohmian semi-classical approximation to scalar quantum electrody-

namics
e Schrodinger equation for matter:
00V(9,1) = H(g, AW (9, 1)
Guidance equation
o =0"(¢,1)
Classical Maxwell equations for with quantum correction:
O F" = j"+70,
Is consistent since: 9,(j" + jj) = 0.
— Crucial in the derivation was that gauge was eliminated!

How to eliminate it in canonical quantum gravity?

(in this case: gauge = spatial diffeomorphism invariance).



Bohmian semi-classical approximation to mini-superspace model

e Restriction to homogeneous and isotropic (FLRW) metrics and fields:
— Gravity: ds® = dt* — a(t)*dQ3
— Matter: ¢ = ¢(t)
Wheeler-DeWitt equation:

(HG—FHM)w:O,

_ 3 _ 3
H —4—a20(aa)—1—aVG, HM— 2a38¢+GVM
Guidance equations: |
1 .
1= ——0,5, = —05
. 2a ¢ ad ”

e Semi-classical approximation:

10 = Hytp ¢ = —5¢S

and Friedmann equation with quantum correction:
a2 2

— ==+ Vu+ Ve+Q
a 2



IV. QUANTUM-TO-CLASSICAL TRANSITION IN INFLATION
THEORY

Cosmological perturbations

e Inflaton field: p(x,7n) = wo(n) + dp(x, n)

Metric with scalar perturbations, in the longitudinal gauge:
ds® = a*(n) {[1 + 26(n, x)] dip® — [1 — 2¢(n, x)] §;dz'da’ },

e Gauge invariant Mukhanov-Sasaki variable which describes perturbations:
_ 0
— Qa 5 + ,
Y [ » ,qu]

with H = %/ the comoving Hubble parameter. Its classical equation of motion is:

Z//

y"' — Viy — —y=0 (2= apy/H)

e So we have 3 variables: a, ¢y and y.

—a and ¢ are treated classically and independent of y

— y is quantized. The assumed quantum state W(y) is the Bunch-Davies vacuum.



The quantum vacuum fluctuations give rise to
e the fluctuations in CMB

e to structures such as galaxies, clusters of galaxies, etc.




The quantum vacuum fluctuations give rise to
e the fluctuations in CMB

e to structures such as galaxies, clusters of galaxies, etc.

However:

— How does the vacuum state of the perturbations, which is homogeneous and

isotropic, gives rise to perturbations which are inhomogeneous and anisotropic?

— How do the quantum fluctuations become classical fluctuations?



According to standard quantum theory this can only be achieved by collapse of the
wave function. But collapse is supposed to happen upon measurement. But when
exactly does a measurement happen? Which processes count as measurements in

the early universe?

— Measurement problem!
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collapse theories (Sudarsky), many worlds, Bohmian mechanics



According to standard quantum theory this can only be achieved by collapse of the
wave function. But collapse is supposed to happen upon measurement. But when

exactly does a measurement happen?

— Measurement problem

— Is especially severe in cosmological context! Which processes count as measure-

ment in the early universe?

Possible solutions:

collapse theories (Sudarsky), many worlds, Bohmian mechanics

— We illustrate the problem and possible solutions in the simple cases of
e a decaying atom
e the inverted harmonic oscillator

(For Bohmian treatment of the problem in inflation theory, see Pinto-Neto, Santos,
Struyve 2012)



Decaying atom
Consider a decaying atom which emits a photon described by a spherically symmetric

wave function:

O,
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With detectors:



Decaying atom
Consider a decaying atom which emits a photon described by a spherically symmetric

wave function:

O,

With detectors:
o Vs
[] [

°
Q.O'

— according to standard quantum theory collapse breaks the symmetry



Bohmian description:

Without detectors:

With detectors:

— actual particle breaks the symmetry



Inverted harmonic oscillator (e.g. Albrecht et al. 1994)

Classical treatment

2
e Potential:  V = —%
e Equation of motion: ¢ =¢

o Possible trajectories: ¢ = Ae! + Be™!




Inverted harmonic oscillator (e.g. Albrecht et al. 1994)

Classical treatment

2
e Potential:  V = —%
e Equation of motion: ¢ =¢

o Possible trajectories: ¢ = Ae! + Be™!

In phase space:

q=Ac' + Be !, p= Ac' — Be™?

qg~p~ Ac for t>1

lTTlIII!I

= squeezing 5 >A
-5 4] 5 1
q

q



Quantum mechanics

Squeezed state:

B —iC B
Y(q,t) = N exp _ ! : >q2—i—t
2 2
B\ 1 |
N=|—] , B = : C' = tanh 2t
T cosh 2t
Note B
1
Ag? = — Ap? = — + —
T =5p P=5735
9 o 1
For t =0 : Aq :Ap:§
For ¢t > 1: AG* ~ Ap* > 1

— Initially minimum uncertainty in ¢ and p. However, both spread in time!

— The wave function is not peaked around a classical trajectory!

How can it correspond to a classical system?



Common classicality arguments

1. Commuting observables

Heisenberg operators (time evolution O(t) = eiﬁta(())e_iﬁt):

For ¢t > 1:

Hence

q(1),p(t)] =~ 0 — Classicality



Common classicality arguments

1.

Commuting observables

Heisenberg operators (time evolution O(t) = eiﬁta(())e_iﬁt):

qit) = Ae' + Be™',  p(t) = Ae' — Be™"

(with A = 1(q(0) + 5(0)), B = 1 (G(0) — p(0)))

For t > 1:
qt) = p(t) = Ae'
Hence
q(1),p(t)] =~ 0 — Classicality
However

(1), p(t)] =150



Similarly: free particle

Heisenberg operators:

7(t) =3(0) +—p0),  Plt) = PI0)
For large t/m: t
(1) ~ L10)
Hence
z(t), p(t)] = 0 = Classicality
However

(1), p(t)) =150



Similarly: free particle

Heisenberg operators:

7(t) =3(0) +—p0),  Blt) = PIO)
For large t/m: t
(1) ~ L10)
Hence
z(t), p(t)] = 0 = Classicality
However

(1), p(t)) =150

A correct argument:

Aa(t)? = Ax(0 + — ({{F(0), BO)}) — (F(0)) (BLO0))) + - Ap(0)
~ Az(0)? for small %

= No spreading for a very massive particle for short enough times.



2. Wigner distribution:

p(q,p,t) =

(g, ) exp ( . BW)

— (g, t)?6(p—q)  for  t>1

— Is not peaked around one particular classical trajectory
— But:

- is positive (is usually not the case)
- satisfies Liouville equation dp/dt = 0 (is usually not the case)

- quantum mechanical expectation values equal classical averages over p

However, this does not mean classical limit is achieved!



3. WKB limit

With 1) = [¢el”:
oS (VS)?
|4 =0
o Ty TV HE=0
2
q B 2
V=—— =—(1—-B
5 Q=5 q)
Fort > 1: 05 (VS)
V=0
o 2 V7
— Formally same as classical Hamilton-Jacobi equation
But:

Does not imply we can assume a classical trajectory



4. Decoherence

Decoherence due to coupling with other degrees of freedom may yield decompo-

sition of v into “classical wave packets”. Collapse may select one of these.

Where does the decoherence come from in inflation theory?

— Interactions between sub and super Hubble modes (which would show up when

treating the fluctuations up to second order).

— Interactions with the matter fields



De Broglie-Bohm description description of the inverted oscillator

¢g=VS =  (=F+F
Classical force: Fr = q

Quantum force: F = qB?

Ratio:
I

- —B?> =0 for t>1 — classical behaviour
C

More precisely:

q(t) ~ Vet 4 =2

~e for t>1

— No appeal to decoherence!

— |f there is decoherence of the expected type, then this will not affect the clas-

sicality.



