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Systems and states

✤ Closed systems:

✤ Full specification of system at any time 
leads to full specification at all other times.

✤ Often assumed; generally only a convenient 
approximation

✤ Spacetime and causality can create truly 
closed systems: physics in region with 
boundary at infinity, null, or non-existent

✤ Open systems:

✤ Spacetime regions with timelike boundary
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Systems and states

✤ Phase space:

✤ Can be 
✤ continuous [e.g. particles in a box]

✤ discrete (or discretized) [e.g. quantum particles 
in a box]

✤ Can be 

✤ compact [e.g. finite-energy particles in a box]
✤ non-compact [e.g. unrealistic particles in a box]

✤ Hilbert space

✤ finite or 

✤ infinite dimensional
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✤ Bekenstein bound (Bekenstein 81):

✤ Saves second law from black holes
✤ Saturated by Bekenstein-Hawking entropy of BH

✤ Suggests finite number of states (or finite-dimension Hilbert 
space) for finite regions of finite energy. (Not true in classical 
physics)

✤ Bousso bound (Bousso 99):

✤ Consider area A of boundary of some volume, and 
converging lightsheets from A.  Integral of entropy flux 
though either sheet is S < A/4.

✤ Derivable from version of Bekenstein bound: trying to 
pack entropy leads to mass, and spacetime curvature. 
(Flanagan et al. 2000)

Entropy bounds
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Evolution and entropy

✤ Closed systems we generally assume to have a unitary evolution operator, 
often preserving phase space volume (e.g. Hamiltonian systems). Open 
systems may or may not approximate this.

✤ Fine-grained entropy preserved.
✤ Coarse-grained entropy generally non-decreasing.

✤ ‘Hamiltonian’ closed systems with finite maximum entropy: 

✤ Poincare recurrence theorem applies.
✤ If system ‘lasts’ a recurrence time, will return arbitrarily close to initial 

state.



‘Boltzmann’s Brain’ Paradox 1

✤ Consider a Hamiltonian (H) system of finite 
entropy S that starts away from equilibrium in 
macrostate A0, and let it evolve.

✤ Suppose at some time data D is observed.  Would 
like to predict using D, A0, and H.

✤ Problem: nearly all instances of D will correspond 
to macrostates that:

A. Are part of fluctuations away from equiliubrium 
(like Poincare recurrences)

B. Are maximal entropy subject to constraints D.

✤ This makes incorrect predictions, thus it seems we 
do not inhabit a finite-entropy Hamiltonian system.
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‘Boltzmann’s Brain’ paradox 2

✤ Conclusion holds for entropy S arbitrarily large but finite.

✤ Does not (apparently) hold if S is infinite.
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Infinite statistically uniform spaces

✤ Eternal inflation produces such spaces as 
post-inflationary reheating surfaces.*
✤ Reheating surfaces are generically infinite
✤ Properties are determined by field 

evolution, which can be same classically 
everywhere.

✤ Randomness provided by thermal/
quantum fluctuations with uniform 
statistics.

✤ Because physical laws obey FLRW 
symmetries, later universe is also 
statistically uniform.

* Some subtleties about the uniformity; see ATL.



Duplicate semi-paradox: a given local configuration will 
have infinite replicas distributed uniformly throughout 
the space.

✤ A configuration (including one we create in a lab) is something that evolved from 
our initial cosmic state.

✤ Those initial data (and variations of it) are part of a finite state-space, and should 
thus be replicated infinitely often throughout a statistically uniform space.

✤ Thus our configuration should also arise elsewhere.

✤ The preponderance is something quite difficult to calculate, and involves many 
subtle questions; but it is not relevant here.

✤ No link between this evolution and cosmic ‘location’ thus these replicas should 
arise with a (statistically) uniform distribution.



Duplicate semi-paradox: a given local configuration will 
have infinite replicas distributed uniformly throughout 
the space. Do we care?

✤ One might argue as to whether duplicates are different or same system.  
Can’t reduce to ‘periodic’ universe, as period differs for different-size 
systems.

✤ Weird improbable things happen, but we can’t see/interact with them.  
Somewhat like MWI of QM.



✤ e.g., measurement of z-component of single particle’s spin

✤ Apparatus has ‘ready’ state and states* corresponding to outcomes. (Pre)-
measurement as per Von Neumann:

✤ We could also include an environment, human observer, etc., along similar lines.

✤ From previous argument: There are replicas of our setup distributed throughout the 
space. We don’t know which one ‘we’ are measuring.

Consider a prototypical quantum experiment, plus 
macroscopic measuring apparatus.

(↵|"i+ �|#i)|ari �! ↵|"i|a"i+ �|#i|a#i

*Realistically, many, many microstates for each outcome.

 1 = ↵|"i + �|#i, (|↵|2 + |�|2 = 1)



(aside): This exhibits the measurement problem.

✤ The apparatus has just made the superposition larger, not collapsed it. Both 
outcomes are still there.

✤ Decoherence via interaction with random environment can remove any practical 
possibility of interference between device outcome states, but does not remove the 
superposition.

✤ Copenhagen (and related): at some point the superposition must be replaced 
by one of its elements.

✤ Many-worlds: The superposition always remains, and grows to include 
observer, environment, etc.

✤ Where do probabilities enter?

✤ Copenhagenesque: Born rule postulate specifies that in repeated sequence of 
identical trials, relative frequencies given by |α|2 and |β|2.

✤ Many-worlds: more subtle, since both ‘happen.’  Can’t naively compare relative 
frequencies of (sequences of) outcomes: in long series most observers will see 
50-50, regardless of α and β.



Quantum duplicate paradox: if we consider the joint 
system, the standard Born rule is insufficient to produce 
probabilities.
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Don Page, arXiv:0903:4888:
“This isn’t the square modulus of a 
quantum amplitude”
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✤ Accept classical probabilities, look at N → ∞ limit. 
The classical probabilities take over!

✤ All terms look like random strings with relative 
frequencies given by |α|2 and |β|2, representing 
a spatial ensemble in accord with Born rule.

✤ Except those that don’t - but these have total 
Hilbert measure zero.

Partial resolution

...|⇥⇤|⇥⇤|�⇤|⇥⇤|�⇤|�⇤|�⇤|⇥⇤|�⇤|⇥⇤...

Proof:
Define confusion operator as in arXiv:1008:1066, show that 
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This puts quantum interpretation in a different light.

✤ Infinite set of equally-valid observers, 
measuring both outcomes, w/Born freq.

✤ Two lenses:

✤ Copenhagen: difference between terms 
is questionable; collapse is irrelevant.

✤ Everett: the many worlds are redundant; 
No observers are ‘more real’ than others.

✤ ‘Born rule’ probabilities not really relevant: 
probabilities determined by relative spatial 
frequencies.

✤ Randomness from inability to ‘self-identify’ 
amongst indistinguishable systems.
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Cosmological prediction conundrum: if all possible local 
Universes are created, how do we test the underlying theory?

Little problem if all ‘pocket universes’ are equivalent.  But 
what if they are not?

• Random-valued fields (e.g. axion)

• Different transitions into minima ⇒ different inflationary 

predictions.
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What question do we want to ask ? 

• What values of the observables will we observe?

• More well posed: given that I am a randomly 
chosen X, what will I observe? (see AA & Tegmark; 

Bostrom; Hartle) 

• What values would be observed in a randomly 
chosen universe? 

• What values would be seen from a random point 
in space?  

• What values would be seen by a random 
observer?

• Then: assume that our observations are like 
those of a typical X.



What question do we want to ask ? 

• What values of the observables will we observe?

• More well posed: given that I am a randomly 
chosen X, what will I observe? (see AA & Tegmark; 

Bostrom; Hartle) 

• What values would be observed in a randomly 
chosen universe? 

• What values would be seen from a random point 
in space?  

• What values would be seen by a random 
observer?



What question do we want to ask ? 

• What values of the observables will we observe?

• More well posed: given that I am a randomly 
chosen X, what will I observe? (see AA & Tegmark; 

Bostrom; Hartle) 

• What values would be observed in a randomly 
chosen universe? 

• What values would be seen from a random point 
in space?  

• What values would be seen by a random 
observer?

Winitzki 05



What question do we want to ask ? 

• What values of the observables will we observe?

• More well posed: given that I am a randomly 
chosen X, what will I observe? (see AA & Tegmark; 

Bostrom; Hartle) 

• What values would be observed in a randomly 
chosen universe? 

• What values would be seen from a random point 
in space?  

• What values would be seen by a random 
observer?



What question do we want to ask ? 

• What values of the observables will we observe?

• More well posed: given that I am a randomly 
chosen X, what will I observe? (see AA & Tegmark; 

Bostrom; Hartle) 

• What values would be observed in a randomly 
chosen universe? 

• What values would be seen from a random point 
in space?  

• What values would be seen by a random 
observer?



Let pX(oi) = probability of randomly chosen X measuring oi.
How might we compute pX(oi) ?

1.Choose X (e.g. “observer”: proxied by a stable solar mass, solar metallicity star.)

2.Choose p useful in calculating pX(oi)= pp(oi) x nx,p(oi). (e.g., a cm3 of physical volume 
at the time of reheating)

3.Calculate pp(oi) using inflationary dynamics.

4.Calculate nx,p(oi)  (e.g. the number of solar-mass, solar-metallicity stars per cm3)



• Assume: 

• p=baryon, and pp(Λ) = const.

• Only Λ varies: Q (pert. amplitude) and ξ (matter/photon ratio) etc. fixed.

• X=galaxy of 1012 M✺

• Then:

• Exponential cutoff in Λ/ξ4Q3 

• For observed ξ, Q, find pX(Λ) peaks at (few)~ Λobs.

• Weinberg on this basis predicted a small but nonzero Λ before it was 
observed.

• (See Tegmark, Aguirre, Wilczek & Rees 06 for an axion case study).

Case study: the Weinberg/Banks/Vilenkin Λ argument.



Choosing X: what question do we want to ask?

• Decision: what do we choose for X?.

• X=“Observer” (aka “anthropic”): 
• What is an observer? 
• Assuming we are “typical 

observers” leads to strange 
paradoxes.

Observable: N: number of observers born before us.
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Choosing X: what question do we want to ask?

• Decision: what do we choose for X?.

• X=“Observer” (aka “anthropic”): 
• What is an observer? 
• Assuming we are “typical 

observers” leads to strange 
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Choosing X: what question do we want to ask?

• Decision: what do we choose for X?.

• X=“Observer with all our observations” (aka “top-down”): 
• Cannot rule theories out!

Monday -- Theorist A: “according to my doubly-quantum supertorus 
theory, with p=0.9999999 confidence, the universe will be red and 
right-spinning. There is a tiny chance 1-p that it is blue and left-
spinning.”
Tuesday -- The universe is observed to be blue. Theorist A: “Oh well.”
Wednesday -- Theorist B: “Don’t despair! Using top-down reasoning, 
a blue universe is given. According to supertorus theory, the universe 
is left-spinning.”
Thursday -- The universe is observed to be right-spinning.
etcetera...



How do we calculate pp(oi)?

• Bad news: regularization required. 
• Infinitely many bubbles.
• Each is spatially infinite inside.



Galilean paradox and the ordering ambiguity

• ‘Obvious’ answer is to order by ‘proximity’, i.e. take space or spacetime 
volumes, compute ratio, send volume to infinity

• Problem: in eternal inflation the answer completely depends upon the 
manner in which this is done.

1  3  5  7  9  11....

2  4  6  8  10  12....1  2  3  4  5    6....1  3  5  7  9   13.... Galileo 1638



(Guth): Imagine that universe is dominos. At 
each instance, you line up 2 1’s for each 2. Twice 
as many 1s as 2s at each time. 1s are twice as 
probable! 

Equal-time

Galilean paradox and the ordering ambiguity



(Guth): Imagine that universe is dominos. At 
each instance, you line up 2 1’s for each 2. Twice 
as many 1s as 2s at each time. 1s are twice as 
probable! 
(Aguirre): But you know by construction that 
each 2 comes with a 1: the probabilities must be 
equal!
(Guth): no.
(Aguirre): yes.

Equal-time

Galilean paradox and the ordering ambiguity



Also: time slices can be drawn to 
include all 1’s, or all 2’s, or a mix

Equal-time 
choices

Galilean paradox and the ordering ambiguity



How do we calculate pp(oi)?

• Bad news: regularization required. 
• Infinitely many bubbles.
• Each is spatially infinite inside.

• Yet: we can put sensible-seeming 
measures on huge but finite regions of 
the spacetime, which converge; surely 
these mean something?

• But many choices



Methods of regularization

✤ Many choices, a few basic 
philosophies 

✤ Count physical or comoving 
volume, or volume created, 
at fixed time.

✤ Count numbers of pocket 
universes.

✤ Count transitions along a 
worldline.

✤ Other (e.g. equal-weighting)

tN

t1

t0

Boltzmann brains
Youngness paradox

Fast-transition fiasco

Q-catastrophe

Up-transition 
upside-downness

Domino dilemma

Observational obstacles



How do we calculate pp(oi)?

• Which is “correct”? How might we 
choose?  Unclear!

• But:
• Many arguably ruled out 
• Many turn out to be the same! 

• e.g., Worldline transition frequency 
measure from comoving volume.

• e.g., Shadow-counting from worldline 
entries.

• e.g. light-cone time cutoff and causal 
patch (Bousso & Katz ’12)

• Perhaps we are running out of ideas? 
(or not: ideas are     )ℵ2



Computing nx,p(oi)

• Suppose X = stable star w/solar 
metallicity.

• Good news: It’s hard, but we can pretty 
much do this (for cosmological 
parameters).

Tegmark, Aguirre, Rees & Wilczek 06



Computing nx,p(oi)

• Suppose X = stable star w/solar 
metallicity.

• Good news: It’s hard, but we can hope 
to do this (for cosmological 
parameters).

• First step (Tegmark et al. 06): let F=fraction 
of dark matter collapsed into halos 
above virial temperature Tvir.
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Computing nx,p(oi)

• Suppose X = stable star w/solar 
metallicity.

• Good news: It’s hard, but we can pretty 
much do this (for cosmological 
parameters).

• Second step: try to convert halos into 
galaxies with stars.  Note:

• Cutoff at high Λ from structure 
suppression.

• Cutoffs at high density (encounters) 
and low density (cooling and metals), 
but soft.



• Bad news: (“counterfactual cosmology conundrum”?)Many regions of 
parameters space may support Xs:

• Degeneracies exist in cosmological parameters: 

• Qualitatively new physics can change simple reasoning, e.g.

• “Cold Big-Bang” (AA 01)

• “Weakless universe” (Harnik et al. 06)

• Thus, even successful prediction may not survive when additional 
parameters are allowed to vary.

• E.g., Weinberg argument falls apart if pp for ξ4Q3 is rising.

• Bottom line: many anthropic “successes” are fragile and provisional -- 
we need to do the whole problem.

Issues in computing nx,p(oi)



Summary

✤ Either infinitely or finitely many states creates uncomfortable issues.
✤ The infinite, statistically uniform spaces many claim are created be 

various cosmologies produce uncomfortable issues.
✤ The infinite production of different cosmologies with different 

properties creates uncomfortable issues.

We probably need to get comfortable with the discomfort -- 
we may well learn a lot!


