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Systems and states

* Closed systems:

* Full specification of system at any time
leads to full specification at all other times.

* Often assumed; generally only a convenient
approximation

* Spacetime and causality can create truly
closed systems: physics in region with
boundary at infinity, null, or non-existent

* Open systems:

* Spacetime regions with timelike boundary




Systems and states

* Phase space:
* Can be
* continuous [e.g. particles in a box]

* discrete (or discretized) [e.g. quantum particles
in a box]

* Can be
* compact [e.g. finite-energy particles in a box]
* non-compact [e.g. unrealistic particles in a box]

* Hilbert space

+*  finite or

* infinite dimensional

Adorjus wnwixew aj1uy



Entropy bounds

* Bekenstein bound (Bekenstein 81):
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* Saturated by Bekenstein-Hawking entropy of BH

* Saves second law from black holes S <

* Suggests finite number of states (or finite-dimension Hilbert
space) for finite regions of finite energy. (Not true in classical
physics)

- Bousso bound (Bousso 99):

* Consider area A of boundary of some volume, and
converging lightsheets from A. Integral of entropy flux
though either sheetis S < A /4.

* Derivable from version of Bekenstein bound: trying to

pack entropy leads to mass, and spacetime curvature.
(Flanagan et al. 2000)



Evolution and entropy

* Closed systems we generally assume to have a unitary evolution operator,
often preserving phase space volume (e.g. Hamiltonian systems). Open
systems may or may not approximate this.

* Fine-grained entropy preserved.
* Coarse-grained entropy generally non-decreasing.

* ‘Hamiltonian’ closed systems with finite maximum entropy:
* Poincare recurrence theorem applies.

* If system ‘lasts” a recurrence time, will return arbitrarily close to initial
state.



‘Boltzmann’s Brain’ Paradox 1

* Consider a Hamiltonian (H) system of finite

entropy S that starts away from equilibrium in
macrostate Ao, and let it evolve.

- Suppose at some time data D is observed. Would
like to predict using D, Ao, and H.

- Problem: nearly all instances of D will correspond
to macrostates that:

A. Are part of fluctuations away from equiliubrium
(like Poincare recurrences)

B. Are maximal entropy subject to constraints D.

This makes incorrect predictions, thus it seems we
do not inhabit a finite-entropy Hamiltonian system.




‘Boltzmann’s Brain’ paradox 2

* Conclusion holds for entropy S arbitrarily large but finite.

* Does not (apparently) hold if S is infinite.



Infinite statistically uniform spaces

« Eternal inflation produces such spaces as
post-inflationary reheating surfaces.”

reheating

* Reheating surfaces are generically infinite

* Properties are determined by field
evolution, which can be same classically
everywhere.

+ Randomness provided by thermal/
quantum fluctuations with uniform
statistics.
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* Because physical laws obey FLRW
symmetries, later universe is also
statistically uniform.

* Some subtleties about the uniformity; see ATL.



Duplicate semi-paradox: a given local configuration will
have infinite replicas distributed uniformly throughout
the space.

* A configuration (including one we create in a lab) is something that evolved from
our initial cosmic state.

* Those initial data (and variations of it) are part of a finite state-space, and should
thus be replicated infinitely often throughout a statistically uniform space.

* Thus our configuration should also arise elsewhere.

* The preponderance is something quite difficult to calculate, and involves many
subtle questions; but it is not relevant here.

* No link between this evolution and cosmic ‘location” thus these replicas should
arise with a (statistically) uniform distribution.



Duplicate semi-paradox: a given local configuration will
have infinite replicas distributed uniformly throughout
the space. Do we care?

* One might argue as to whether duplicates are different or same system.
Can’t reduce to “periodic’ universe, as period differs for different-size
system:s.

* Weird improbable things happen, but we can’t see/interact with them.
Somewhat like MWI of QM.



Consider a prototyplcal quantum experiment, plus
macroscopic measuring apparatus.

* e.g., measurement of z-component of single particle’s spin

Y1 =all) + B, (Jel* +18]° = 1)

* Apparatus has ‘ready’ state and states* corresponding to outcomes. (Pre)-
measurement as per Von Neumann:

(@) + BlNlar) — all)|ar) + Bll)|ay)
*  We could also include an environment, human observer, etc., along similar lines.

* From previous argument: There are replicas of our setup distributed throughout the
space. We don’t know which one “we’ are measuring.

“Realistically, many, many microstates for each outcome.



(aside): This exhibits the measurement problem.

* The apparatus has just made the superposition larger, not collapsed it. Both
outcomes are still there.

Decoherence via interaction with random environment can remove any practical
possibility of interference between device outcome states, but does not remove the
superposition.

* Copenhagen (and related): at some point the superposition must be replaced
by one of its elements.

* Many-worlds: The superposition always remains, and grows to include
observer, environment, etc.

*  Where do probabilities enter?

* Copenhagenesque: Born rule postulate specifies that in repeated sequence of
identical trials, relative frequencies given by lal2and 312

* Many-worlds: more subtle, since both ‘happen.” Can’t naively compare relative
frequencies of (sequences of) outcomes: in long series most observers will see
50-50, regardless of o and (.



Quantum duplicate paradox: it we consider the joint
system, the standard Born rule 1s imsufficient to produce

probabilities.

= (o) + 5I1) @ (afl) + 5I1) @ (afl) + 51))
=’ + BN + ... + 87D

Don Page, arXiv:0903:4888:
“This isn t the square modulus of a
quantum amplitude”

NI
Nf N
N
P> (V) @ar@a®mr —aa=p
S A ———
Quantum Classical

probability  probability




Partial resolution

* Accept classical probabilities, look at N — oo limit.
The classical probabilities take over!

*  All terms look like random strings with relative
frequencies given by la|? and |3 12, representing
a spatial ensemble in accord with Born rule.

* Except those that don’t - but these have total

Hilbert measure zero.
these are indistinguishable

Proof:

Define confusion operator as in arXiv:1008:1066, show that || @[y)[|> < 2e=2°N



This puts quantum interpretation in a different light.

* Infinite set of equally-valid observers,
measuring both outcomes, w/Born freq.

Two lenses:

Copenhagen: difference between terms
is questionable; collapse is irrelevant.

Everett: the many worlds are redundant;
No observers are “‘more real’ than others.

‘Born rule” probabilities not really relevant:
probabilities determined by relative spatial
frequencies.

Randomness from inability to ‘self-identify’
amongst indistinguishable systems.
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Cosmological prediction conundrum: if all possible local
Universes are created, how do we test the underlying theory?”?

Little problem if all ‘pocket universes’ are equivalent. But
what if they are not?

. : 0
e Random-valued fields (e.g. axion) Eaxion = &« sin® 5 0<0<m

* Different transitions into minima = different inflationary

predictions.

many efolds

\ few efolds




What question do we want to ask 7

* What-vatues-ofthe-observables-willwe-oebserve?

* More well posed: given that | am a randomly
chosen X, what will | olbserve? (see AA & Tegmark;

Bostrom; Hartle)

e What values would be observed in a randomly
chosen universe?

e \What values would be seen from a random point
in space”?

e What values would be seen by a random
observer?

e Then: assume that our observations are like
those of a typical X.
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What question do we want to ask 7

* What-vatues-ofthe-observables-willwe-oebserve?

* More well posed: given that | am a randomly
chosen X, what will | olbserve? (see AA & Tegmark;

Bostrom; Hartle)

¢ \What values would be observed in a randomly
chosen universe?

¢ \What values would be seen from a random point
in space”?

e What values would be seen by a random
observer?
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What question do we want to ask 7
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chosen X, what will | olbserve? (see AA & Tegmark;

Bostrom; Hartle)

e What values would be observed in a randomly
chosen universe?

e \What values would be seen from a random point
in space”?

¢ \What values would be seen by a random
observer?



Let px(o) = probability of randomly chosen X measuring o..
How might we compute px(o)) ?

1.Choose X (e.g. “observer”: proxied by a stable solar mass, solar metallicity star.)

2.Choose p useful in calculating px(0j)= pp(0j) X Nxp(0j). (e.g., a cm?3 of physical volume
at the time of reheating)

3.Calculate pp(0)) using inflationary dynamics.

4.Calculate nxp(0)) (e.g. the number of solar-mass, solar-metallicity stars per cm?®)




Case study: the Weinberg/Banks/Vilenkin A argument.

e Assume:
* p=baryon, and pp(\) = const.
* Only A varies: Q (pert. amplitude) and § (matter/photon ratio) etc. fixed.
e X=galaxy of 10" Mx
* Then:
* Exponential cutoff in A/§*Q3
* For observed §, Q, find px(/\) peaks at (few)~ Aops.

* Weinberg on this basis predicted a small but nonzero A before it was
observed.



Choosing X: what question do we want to ask?

e Decision: what do we choose for X?.

e X="Observer” (aka “anthropic”):
e What is an observer?

e Assuming we are “typical Now
observers” leads to strange
)]
paradoxes. =
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-CE /
@ Time
g 1950
= e
>le—> -
~10™ 7x10°

Observable: N: number of observers born before us.



Choosing X: what question do we want to ask?

e Decision: what do we choose for X?.

e X="Observer” (aka “anthropic”):
e \What is an observer?

e Assuming we are “typical
observers” leads to strange
paradoxes.

Birthrate

Time



Choosing X: what question do we want to ask?

e Decision: what do we choose for X?.

e X="Observer with all our observations” (aka “top-down”):
e Cannot rule theories out!

Monday -- Theorist A: “according to my doubly-quantum supertorus
theory, with p=0.9999999 confidence, the universe will be red and
right-spinning. There is a tiny chance 1-p that it is blue and left-
spinning.”

Tuesday -- The universe is observed to be blue. Theorist A: “Oh well.”

Wednesday -- Theorist B: “Don’t despair! Using top-down reasoning,
a blue universe is given. According to supertorus theory, the universe
is left-spinning.”

Thursday -- The universe is observed to be right-spinning.

etcetera...



How do we calculate pp(0)?

e Bad news: regularization required.
* Infinitely many bubbles.
e Each is spatially infinite inside.




Galilean paradox and the ordering ambiguity
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* ‘Obvious’ answer is to order by ‘proximity’, i.e. take space or spacetime
volumes, compute ratio, send volume to mfinity

® Problem: in eternal inflation the answer completely depends upon the
manner in which this 1s done.



Galilean paradox and the ordering ambiguity

(Guth): Imagine that universe is dominos. At
each instance, you line up 2 1’s for each 2. Twice
as many 1s as 2s at each time. 1s are twice as

probable!

Equal-time




Galilean paradox and the ordering ambiguity

(Guth): Imagine that universe is dominos. At
each instance, you line up 2 1’s for each 2. Twice
as many 1s as 2s at each time. 1s are twice as

probable!

(Aguirre): But you know by construction that
each 2 comes with a 1: the probabilities must be
equal!

(Guth): no.
(Aguirre): yes.

@)

o Equal-time

@)




Galilean paradox and the ordering ambiguity

Also: time slices can be drawn to
include all 1’s, or all 2’s, or a mix

Equal-time ——

choices



How do we calculate pp(0)?

e Bad news: regularization required.

* Infinitely many bubbles.

e Each is spatially infinite inside.

* Yet: we can put sensible-seeming
measures on huge but finite regions of
the spacetime, which converge; surely
these mean something?

e But many choices




Methods of regularization

+ Many choices, a few basic
bhilosophies

Up-transition
upside-downness

Observational obstacles ing

—e— e = .
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How do we calculate pp(0)?

e Which is “correct”? How might we
choose? Unclear!

e But:
e Many arguably ruled out
e Many turn out to be the same!

¢ e.g., Worldline transition frequency
measure from comoving volume.

¢ e.g., Shadow-counting from worldline
entries.

¢ e.g. light-cone time cutoff and causal
patch (Bousso & Katz ’12)

e Perhaps we are running out of ideas?
(or not: ideas are Ns)



Computing Nx p(0j)

e Suppose X = stable star w,
metallicity.

e Good news: It’s hard, but v
much do this (for cosmoloc
parameters).

Muon Yukawa coupling

0.000607

Gr Tauon Yukawa coupling 0.0102156233

Gu Up quark Yukawa coupling 0.000016 £ 0.000007
Gq4 Down quark Yukawa coupling 0.00003 £ 0.00002
Ge Charm quark Yukawa coupling 0.0072 £ 0.0006

Gs Strange quark Yukawa coupling 0.0006 £ 0.0002

Gt Top quark Yukawa coupling 1.002 £ 0.029

Gp Bottom quark Yukawa coupling 0.026 £+ 0.003

sinf12 Quark CKM matrix angle 0.2243 £ 0.0016

sin @23 Quark CKM matrix angle 0.0413 £ 0.0015
sinf13 Quark CKM matrix angle 0.0037 £ 0.0005

d13 Quark CKM matrix phase 1.05+ 0.24

Bqcd CP-violating QCD vacuum phase i [ ke

Gy, Electron neutrino Yukawa coupling 21T e 102

Gy, Muon neutrino Yukawa coupling <11x10"8

Gy, Tau neutrino Yukawa coupling < 0.10

sin @], Neutrino MNS matrix angle 0.55 £ 0.06

sin 265, Neutrino MNS matrix angle > 0.94

sin 6], Neutrino MNS matrix angle <0.22

0{s Neutrino MNS matrix phase ?

PA Dark energy density (1.25 +£0.25) x 10—123
b Baryon mass per photon py /7 (0.50 £ 0.03) x 10—28
€c Cold dark matter mass per photon pc/ny (2.5 £0.2) x 10—28
& Neutrino mass per photon py/ny = % Y my,; <0.9x 10—28

Q Scalar fluctuation amplitude dy on horizon (2.0 +0.2) x 10—°
Ns Scalar spectral index 0.98 £ 0.02

an Running of spectral index dns/dInk |a| < 0.01

T Tensor-to-scalar ratio (Q¢/Q)? <0.36

ng Tensor spectral index Unconstrained

w Dark energy equation of state —-140.1

K Dimensionless spatial curvature k/a?T? [85] |x| < 10—°

Tegmark, Aguirre, Rees & Wilczek 06




Computing Nx p(0j)

e Suppose X = stable star w/solar
metallicity. Velocity v, /c
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Computing Nx p(0j)

e Suppose X = stable star w/solar
metallicity.

e Good news: It’s hard, but we can pretty
much do this (for cosmological
parameters).

e Second step: try to convert halos into
galaxies with stars.



Computing Nx p(0j)

e Suppose X = stable star w/solar
metallicity.

e Good news: It’s hard, but we can pretty
much do this (for cosmological
parameters).

e Second step: try to convert halos into
galaxies with stars. Note:

e Cutoff at high A from structure
suppression.

e Cutoffs at high density (encounters)
and low density (cooling and metals),
but soft.



Issues in computing nx,p(0))

e Bad news: (“counterfactual cosmology conundrum”?)Many regions of
parameters space may support Xs:

* Degeneracies exist in cosmological parameters:

A(pa/p:)t®
Ga(z)s(p)

F(p,x) = erfc [ ] , P =84'Q°.

* Qualitatively new physics can change simple reasoning, e.g.
* “Cold Big-Bang” (AA 01)
e “Weakless universe” (Harnik et al. 06)

* Thus, even successful prediction may not survive when additional
parameters are allowed to vary.

* E.g., Weinberg argument falls apart if pp for £4Q3 is rising.

e Bottom line: many anthropic “successes” are fragile and provisional --
we need to do the whole problem.



Summary

+ Either infinitely or finitely many states creates uncomfortable issues.

* The infinite, statistically uniform spaces many claim are created be
various cosmologies produce uncomfortable issues.

* The infinite production of different cosmologies with different
properties creates uncomfortable issues.

We probably need to get comfortable with the discomfort --
we may well learn a lot!



