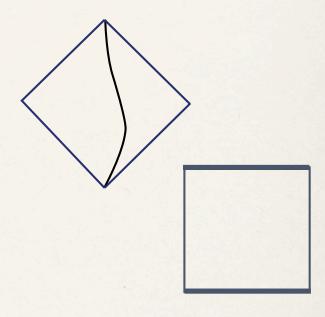
Measures, Self-Selection, Anthropics, and other conundrums: a tale told in paradoxes

Anthony Aguirre, UC Santa Cruz

UCSC Summer School in Philosophy and Cosmology, 2013

Systems and states

- * Closed systems:
 - Full specification of system at any time leads to full specification at all other times.
 - Often assumed; generally only a convenient approximation
 - Spacetime and causality can create truly closed systems: physics in region with boundary at infinity, null, or non-existent
- * Open systems:
 - Spacetime regions with timelike boundary



Systems and states

- * Phase space:
 - Can be
 - continuous [e.g. particles in a box]
 - discrete (or discretized) [e.g. quantum particles in a box]
 - * Can be
 - compact [e.g. finite-energy particles in a box]
 - non-compact [e.g. unrealistic particles in a box]

Hilbert space

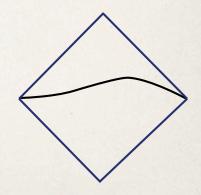
- finite or
- infinite dimensional

finite maximum entropy

Entropy bounds

Bekenstein bound (Bekenstein 81):

- * Saves second law from black holes $S \leq \frac{2\pi kRE}{\hbar c}$
- * Saturated by Bekenstein-Hawking entropy of BH
- Suggests finite number of states (or finite-dimension Hilbert space) for finite regions of finite energy. (Not true in classical physics)
- Bousso bound (Bousso 99):
 - Consider area A of boundary of some volume, and converging lightsheets from A. Integral of entropy flux though either sheet is S < A/4.
 - Derivable from version of Bekenstein bound: trying to pack entropy leads to mass, and spacetime curvature. (Flanagan et al. 2000)



Evolution and entropy

- Closed systems we generally assume to have a unitary evolution operator, often preserving phase space volume (e.g. Hamiltonian systems). Open systems may or may not approximate this.
 - * Fine-grained entropy preserved.
 - * Coarse-grained entropy generally non-decreasing.
- * 'Hamiltonian' closed systems with finite maximum entropy:
 - Poincare recurrence theorem applies.
 - If system 'lasts' a recurrence time, will return arbitrarily close to initial state.

'Boltzmann's Brain' Paradox 1

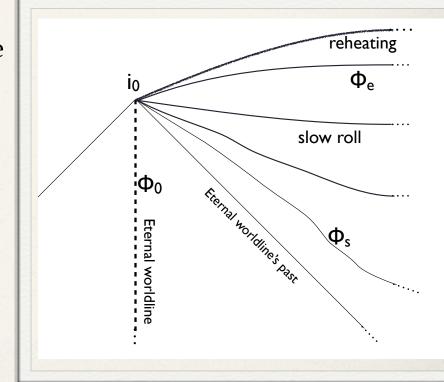
- Consider a Hamiltonian (H) system of finite entropy S that starts away from equilibrium in macrostate A₀, and let it evolve.
- Suppose at some time data D is observed. Would like to predict using D, A₀, and H.
- Problem: nearly all instances of D will correspond to macrostates that:
 - A. Are part of fluctuations away from equiliubrium (like Poincare recurrences)
 - B. Are maximal entropy subject to constraints D.
- * This makes incorrect predictions, thus it seems we do not inhabit a finite-entropy Hamiltonian system.

'Boltzmann's Brain' paradox 2

- * Conclusion holds for entropy S *arbitrarily large* but finite.
- Does not (apparently) hold if S is infinite.

Infinite statistically uniform spaces

- Eternal inflation *produces* such spaces as post-inflationary reheating surfaces.*
 - Reheating surfaces are generically infinite
 - Properties are determined by field evolution, which can be same classically everywhere.
 - Randomness provided by thermal/ quantum fluctuations with uniform statistics.
- Because physical laws obey FLRW symmetries, later universe is also statistically uniform.



* Some subtleties about the uniformity; see ATL.

Duplicate semi-paradox: a given local configuration will have infinite replicas distributed uniformly throughout the space.

- * A configuration (including one we create in a lab) is something that evolved from our initial cosmic state.
- Those initial data (and variations of it) are part of a finite state-space, and should thus be replicated infinitely often throughout a statistically uniform space.
- * Thus our configuration should also arise elsewhere.
- * The *preponderance* is something quite difficult to calculate, and involves many subtle questions; but it is not relevant here.
- No link between this evolution and cosmic 'location' thus these replicas should arise with a (statistically) uniform distribution.

Duplicate semi-paradox: a given local configuration will have infinite replicas distributed uniformly throughout the space. *Do we care*?

- One might argue as to whether duplicates are *different* or *same* system. Can't reduce to 'periodic' universe, as period differs for different-size systems.
- Weird improbable things happen, but we can't see/interact with them. Somewhat like MWI of QM.

Consider a prototypical quantum experiment, plus macroscopic measuring apparatus.

e.g., measurement of z-component of single particle's spin

$$\psi_1 = \alpha |\uparrow\rangle + \beta |\downarrow\rangle, \ (|\alpha|^2 + |\beta|^2 = 1)$$

 Apparatus has 'ready' state and states* corresponding to outcomes. (Pre)measurement as per Von Neumann:

$$(\alpha|\uparrow\rangle + \beta|\downarrow\rangle)|a_r\rangle \longrightarrow \alpha|\uparrow\rangle|a_\uparrow\rangle + \beta|\downarrow\rangle|a_\downarrow\rangle$$

- * We could also include an environment, human observer, etc., along similar lines.
- * From previous argument: *There are replicas of our setup distributed throughout the space*. We don't know which one 'we' are measuring.

(aside): This exhibits the measurement problem.

- The apparatus has just made the superposition larger, not collapsed it. Both outcomes are still there.
- Decoherence via interaction with random environment can remove any practical possibility of interference between device outcome states, but does not remove the superposition.
 - * **Copenhagen (and related):** at some point the superposition must be replaced by one of its elements.
 - * **Many-worlds:** The superposition always remains, and grows to include observer, environment, etc.
- * Where do probabilities enter?
 - * **Copenhagenesque**: Born rule postulate specifies that in repeated sequence of identical trials, relative frequencies given by $|\alpha|^2$ and $|\beta|^2$.
 - Many-worlds: more subtle, since *both* 'happen.' Can't naively compare relative frequencies of (sequences of) outcomes: in long series most observers will see 50-50, regardless of α and β.

Quantum duplicate paradox: if we consider the joint system, the standard Born rule is insufficient to produce probabilities.

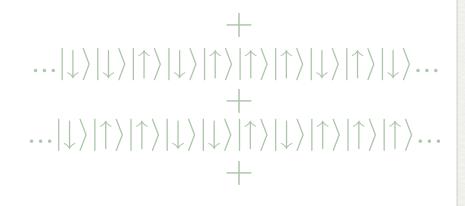
 $\psi = (\alpha |\uparrow\rangle + \beta |\downarrow\rangle) \otimes (\alpha |\uparrow\rangle + \beta |\downarrow\rangle) \otimes (\alpha |\uparrow\rangle + \beta |\downarrow\rangle)$ $= \alpha^{3} |\uparrow\rangle |\uparrow\rangle |\uparrow\rangle + \alpha^{2} \beta |\uparrow\rangle |\downarrow\rangle + \dots + \beta^{3} |\downarrow\rangle |\downarrow\rangle |\downarrow\rangle$

Don Page, arXiv:0903:4888: *"This isn't the square modulus of a quantum amplitude"*

$$P_{\uparrow} = \sum_{n=0}^{N} \binom{N}{n} (\alpha^{*} \alpha)^{n} (\beta^{*} \beta)^{(N-n)} \frac{n}{N} = \alpha^{*} \alpha = p$$
Quantum probability Classical probability

Partial resolution

- * Accept classical probabilities, look at $N \rightarrow \infty$ limit. The classical probabilities take over!
- * All terms look like random strings with relative frequencies given by $|\alpha|^2$ and $|\beta|^2$, representing a spatial ensemble in accord with Born rule.
- Except those that don't but these have total Hilbert measure *zero*.



these are indistinguishable

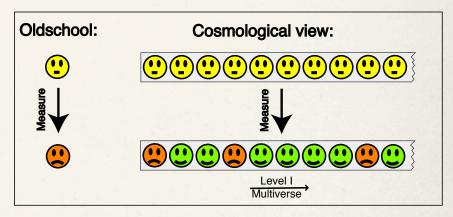
Proof:

Define confusion operator as in arXiv:1008:1066, show that $\|\widehat{\odot}|\psi\rangle\|^2 \leq 2e^{-2\epsilon^2 N}$

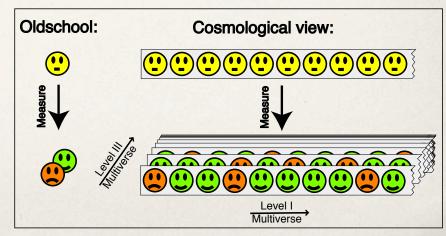
This puts quantum interpretation in a different light.

- Infinite set of equally-valid observers, measuring both outcomes, w/Born freq.
- Two lenses:
 - Copenhagen: difference between terms is questionable; collapse is irrelevant.
 - Everett: the many worlds are redundant; No observers are 'more real' than others.
- 'Born rule' probabilities not really relevant: probabilities determined by relative spatial frequencies.
- Randomness from inability to 'self-identify' amongst indistinguishable systems.

COPENHAGEN (WAVEFUNCTION COLLAPSES)



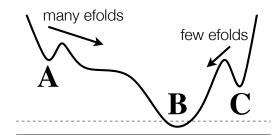
EVERETT (NO WAVEFUNCTION COLLAPSE)



Cosmological prediction conundrum: if all possible local Universes are created, how do we test the underlying theory?

Little problem if all 'pocket universes' are equivalent. But what if they are not?

- Random-valued fields (e.g. axion) $\xi_{axion} = \xi_* \sin^2 \frac{\theta}{2}, \ 0 \le \theta \le \pi$
- Different transitions into minima \Rightarrow different inflationary predictions.

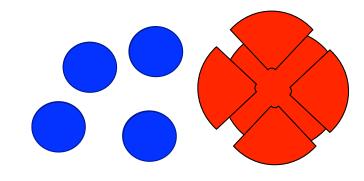


- What values of the observables will we observe?
- More well posed: given that I am a randomly chosen X, what will I observe? (see AA & Tegmark;

- What values would be observed in a randomly chosen **universe**?
- What values would be seen from a random **point in space**?
- What values would be seen by a random observer?
- Then: assume that our observations are like those of a typical **X**.

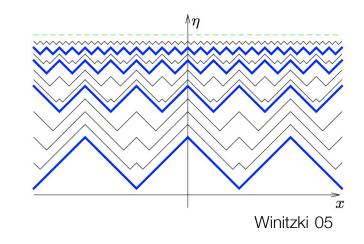
- What values of the observables will we observe?
- More well posed: given that I am a randomly chosen X, what will I observe? (see AA & Tegmark;

- What values would be observed in a randomly chosen **universe**?
- What values would be seen from a random **point in space**?
- What values would be seen by a random observer?

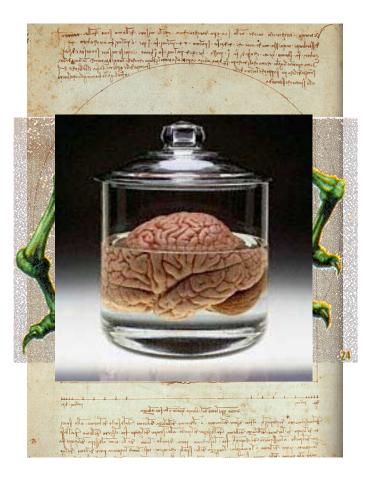


- What values of the observables will we observe?
- More well posed: given that I am a randomly chosen X, what will I observe? (see AA & Tegmark;

- What values would be observed in a randomly chosen **universe**?
- What values would be seen from a random **point in space**?
- What values would be seen by a random observer?



- What values of the observables will we observe?
- More well posed: given that I am a randomly chosen X, what will I observe? (see AA & Tegmark; Bostrom; Hartle)
 - What values would be observed in a randomly chosen **universe**?
 - What values would be seen from a random **point in space**?
 - What values would be seen by a random **observer**?

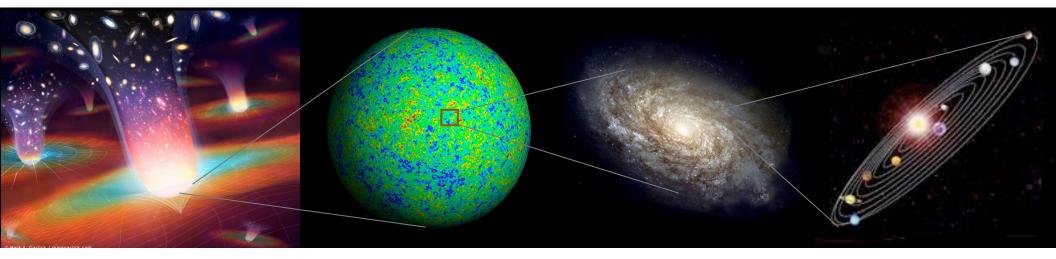


- What values of the observables will we observe?
- More well posed: given that I am a randomly chosen X, what will I observe? (see AA & Tegmark;

- What values would be observed in a randomly chosen **universe**?
- What values would be seen from a random **point in space**?
- What values would be seen by a random **observer**?

Let $p_X(o_i) = probability of randomly chosen X measuring <math>o_i$. How might we compute $p_X(o_i)$?

- 1. Choose X (e.g. "observer": proxied by a stable solar mass, solar metallicity star.)
- 2.Choose **p** useful in calculating $p_X(o_i) = p_p(o_i) \times n_{x,p}(o_i)$. (e.g., a cm³ of physical volume at the time of reheating)
- 3.Calculate $p_p(o_i)$ using inflationary dynamics.
- 4. Calculate $n_{x,p}(O_i)$ (e.g. the number of solar-mass, solar-metallicity stars per cm³)



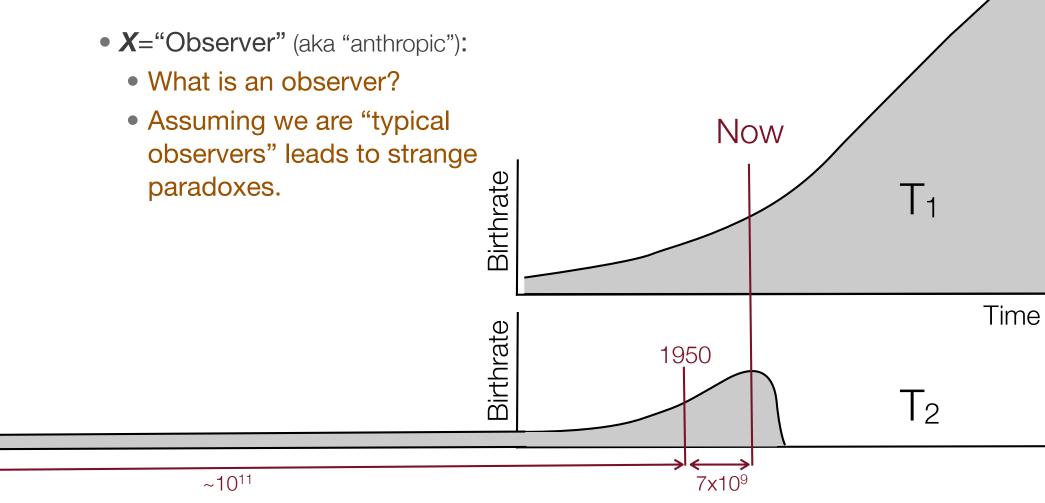
Case study: the Weinberg/Banks/Vilenkin Λ argument.

• Assume:

- p=baryon, and $p_p(\Lambda) = const.$
- Only Λ varies: Q (pert. amplitude) and ξ (matter/photon ratio) etc. fixed.
- *X*=galaxy of 10¹² M_{*}
- Then:
 - Exponential cutoff in Λ/ξ⁴Q³
 - For observed ξ , Q, find $p_X(\Lambda)$ peaks at (few)~ Λ_{obs} .
 - Weinberg on this basis predicted a small but nonzero Λ before it was observed.
- (See Tegmark, Aguirre, Wilczek & Rees 06 for an axion case study).

Choosing X: what question do we want to ask?

• **Decision**: what do we choose for **X**?.

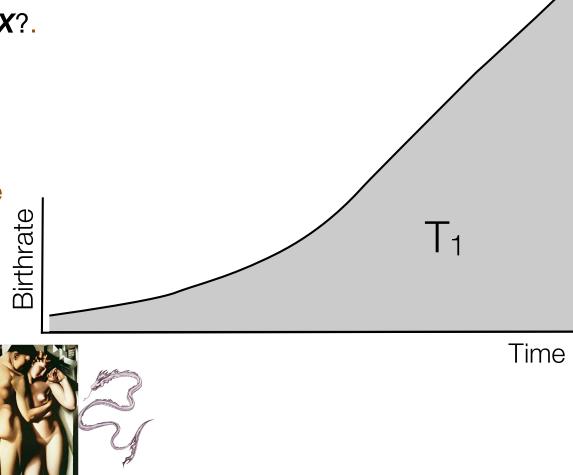


Observable: N: number of observers born before us.

Choosing X: what question do we want to ask?

• **Decision**: what do we choose for **X**?.

- **X**="Observer" (aka "anthropic"):
 - What is an observer?
 - Assuming we are "typical observers" leads to strange paradoxes.



Choosing X: what question do we want to ask?

• **Decision**: what do we choose for **X**?.

- X="Observer with all our observations" (aka "top-down"):
 - Cannot rule theories out!

Monday -- Theorist A: "according to my doubly-quantum supertorus theory, with p=0.99999999 confidence, the universe will be red and right-spinning. There is a tiny chance 1-p that it is blue and left-spinning."

Tuesday -- The universe is observed to be blue. Theorist A: "Oh well."

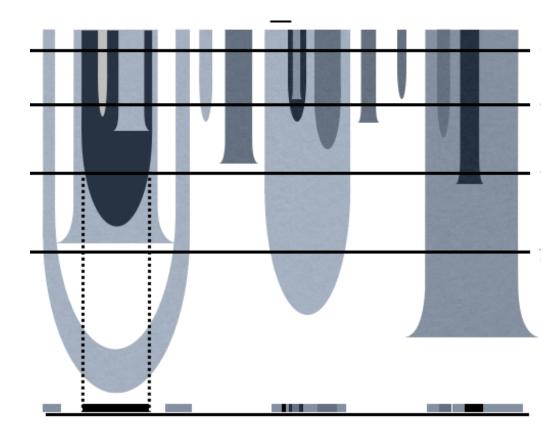
Wednesday -- Theorist B: "Don't despair! Using top-down reasoning, a blue universe is given. According to supertorus theory, the universe is left-spinning."

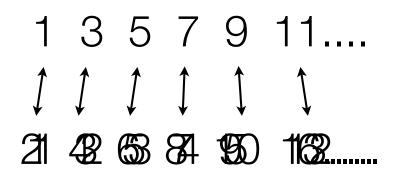
Thursday -- The universe is observed to be right-spinning.

etcetera...

How do we calculate $p_p(o_i)$?

- Bad news: regularization required.
 - Infinitely many bubbles.
 - Each is spatially infinite inside.

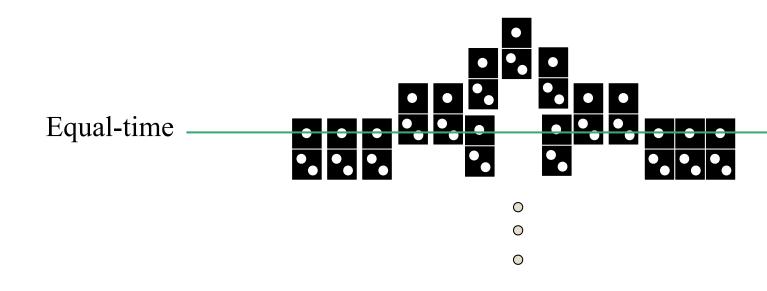




Galileo 1638

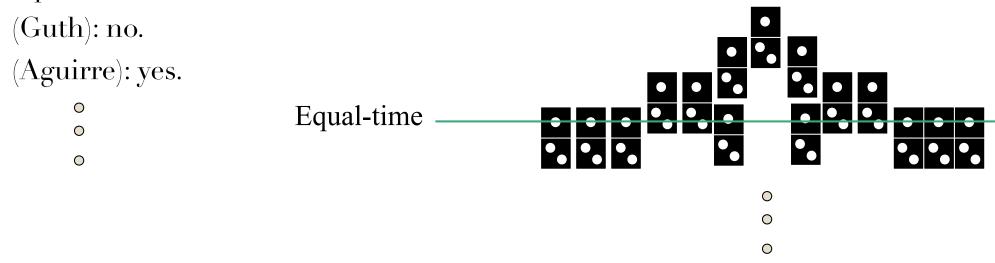
- 'Obvious' answer is to order by 'proximity', i.e. take space or spacetime volumes, compute ratio, send volume to infinity
- **Problem**: in eternal inflation the answer completely depends upon the manner in which this is done.

(Guth): Imagine that universe is dominos. At each instance, you line up 2 1's for each 2. Twice as many 1s as 2s at each time. 1s are twice as probable!

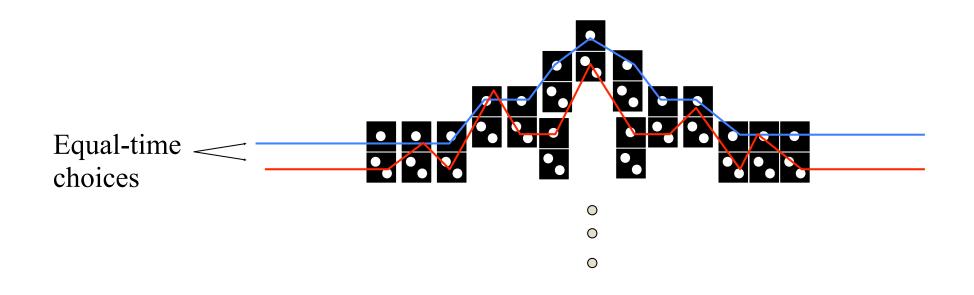


(Guth): Imagine that universe is dominos. At each instance, you line up 2 1's for each 2. Twice as many 1s as 2s at each time. 1s are twice as probable!

(Aguirre): But you know by construction that each 2 comes with a 1: the probabilities must be equal!

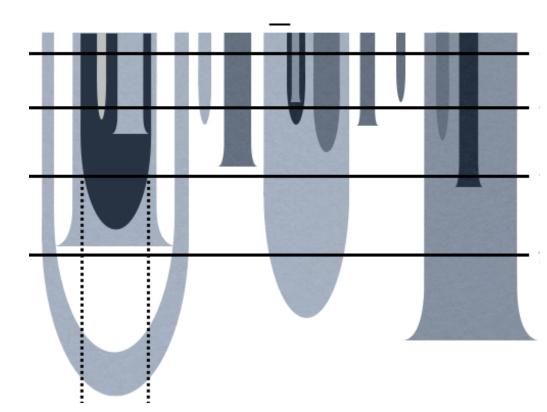


Also: time slices can be drawn to include all 1's, or all 2's, or a mix

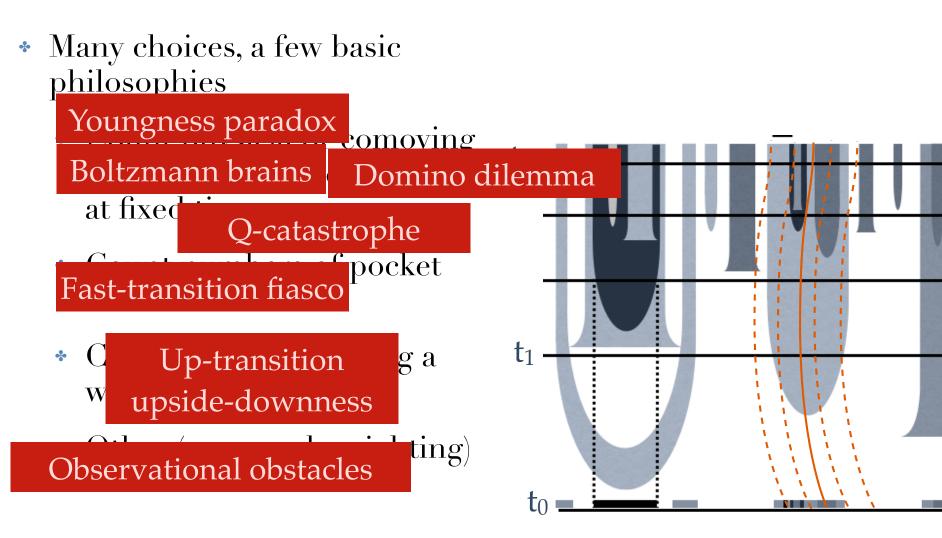


How do we calculate $p_p(o_i)$?

- Bad news: regularization required.
 - Infinitely many bubbles.
 - Each is spatially infinite inside.
- Yet: we can put sensible-seeming measures on huge but finite regions of the spacetime, which converge; surely these mean something?
- But many choices

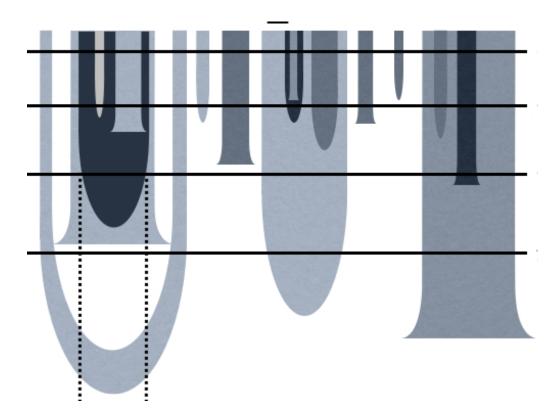


Methods of regularization



How do we calculate $p_p(o_i)$?

- Which is "correct"? How might we choose? Unclear!
- But:
 - Many arguably ruled out
 - Many turn out to be the same!
 - e.g., Worldline transition frequency measure from comoving volume.
 - e.g., Shadow-counting from worldline entries.
 - e.g. light-cone time cutoff and causal patch (Bousso & Katz '12)
- Perhaps we are running out of ideas? (or not: ideas are ℵ₂)



Computing $n_{x,p}(o_i)$

Suppose $X = \text{stable star } W_{\text{stable}}$ sint metallicity. sin

 δ_{13} Good news: It's hard, but $v|_{\theta_{qcd}}$ G_{ν_e} much do this (for cosmolog $G_{\nu \mu}$ parameters). $G_{\nu_{\tau}}$

58.72		
G_{μ}	Muon Yukawa coupling	0.000607
G_{τ}	Tauon Yukawa coupling	0.0102156233
G_u	Up quark Yukawa coupling	0.000016 ± 0.000007
G_d	Down quark Yukawa coupling	0.00003 ± 0.00002
G_c	Charm quark Yukawa coupling	0.0072 ± 0.0006
G_s	Strange quark Yukawa coupling	0.0006 ± 0.0002
G_t	Top quark Yukawa coupling	1.002 ± 0.029
G_b	Bottom quark Yukawa coupling	0.026 ± 0.003
$\sin \theta_{12}$	Quark CKM matrix angle	0.2243 ± 0.0016
$\sin \theta_{23}$	Quark CKM matrix angle	0.0413 ± 0.0015
$\sin \theta_{13}$	Quark CKM matrix angle	0.0037 ± 0.0005
δ_{13}	Quark CKM matrix phase	1.05 ± 0.24
$\theta_{\rm qcd}$	CP-violating QCD vacuum phase	$< 10^{-9}$
G_{ν_e}	Electron neutrino Yukawa coupling	$<1.7\times10^{-11}$
$G_{\nu \mu}$	Muon neutrino Yukawa coupling	$< 1.1 \times 10^{-6}$
$G_{\nu_{\tau}}$	Tau neutrino Yukawa coupling	< 0.10
$\sin \theta'_{12}$	Neutrino MNS matrix angle	0.55 ± 0.06
$\sin 2\theta'_{23}$	Neutrino MNS matrix angle	≥ 0.94
$\sin \theta'_{13}$	Neutrino MNS matrix angle	≤ 0.22
δ'_{13}	Neutrino MNS matrix phase	?
ρΛ	Dark energy density	$(1.25\pm0.25)\times10^{-123}$
ξь	Baryon mass per photon $\rho_{\rm b}/n_{\gamma}$	$(0.50\pm 0.03)\times 10^{-28}$
ξc	Cold dark matter mass per photon $\rho_{\rm c}/n_{\gamma}$	$(2.5\pm 0.2)\times 10^{-28}$
ξν	Neutrino mass per photon $\rho_{\nu}/n_{\gamma} = \frac{3}{11} \sum m_{\nu_i}$	$<0.9\times10^{-28}$
Q	Scalar fluctuation amplitude δ_H on horizon	$(2.0 \pm 0.2) \times 10^{-5}$
n_{s}	Scalar spectral index	0.98 ± 0.02
α_n	Running of spectral index $dn_s/d\ln k$	$ lpha \lesssim 0.01$
r	Tensor-to-scalar ratio $(Q_t/Q)^2$	$\lesssim 0.36$
$n_{\rm t}$	Tensor spectral index	Unconstrained
w	Dark energy equation of state	-1 ± 0.1
κ	Dimensionless spatial curvature k/a^2T^2 [85]	$ \kappa \lesssim 10^{-60}$
	li and	

Tegmark, Aguirre, Rees & Wilczek 06

Computing $n_{x,p}(o_i)$

- Suppose X = stable star w/solar metallicity.
- Good news: It's hard, but we can hope to do this (for *cosmological* parameters).
- First step (Tegmark et al. 06): let F=fraction of dark matter collapsed into halos above virial temperature T_{vir.}

$$F = \operatorname{erfc} \left[\frac{A \left(\frac{m_{\mathrm{p}} n_{\mathrm{vir}}}{\xi_{\mathrm{b}} \xi^{3} Q^{3}} \right)^{1/3}}{\left((18\pi^{2})^{1/3} s \left[\left(\frac{T_{\mathrm{vir}}}{m_{\mathrm{p}} Q} \right)^{3/2} \left(\frac{m_{\mathrm{p}} n_{\mathrm{vir}}}{\xi_{\mathrm{b}} \xi^{3} Q^{3}} \right)^{-1/2} \right]} \right]$$
$$= B \left(\frac{m_{\mathrm{p}} n_{\mathrm{vir}}}{\xi_{\mathrm{b}} \xi^{3} Q^{3}}, \frac{T_{\mathrm{vir}}}{m_{\mathrm{p}} Q} \right), \qquad (32)$$



Computing *n_{x,p}(o_i)*

- Suppose X = stable star w/solar metallicity.
- Good news: It's hard, but we can pretty much do this (for *cosmological* parameters).
- Second step: try to convert halos into galaxies with stars.

Computing *n_{x,p}(o_i)*

- Suppose X = stable star w/solar metallicity.
- Good news: It's hard, but we can pretty much do this (for *cosmological* parameters).
- Second step: try to convert halos into galaxies with stars. Note:
 - Cutoff at high Λ from structure suppression.
 - Cutoffs at high density (encounters) and low density (cooling and metals), but soft.

Issues in computing *n_{x,p}(o_i*)

- Bad news: ("counterfactual cosmology conundrum"?)Many regions of parameters space may support Xs:
 - Degeneracies exist in cosmological parameters:

$$F(\mu,x)= ext{erfc}\left[rac{A(
ho_\Lambda/
ho_*)^{1/3}}{G_\Lambda(x)s(\mu)}
ight], \quad
ho_*\equiv\xi^4Q^3.$$

- Qualitatively new physics can change simple reasoning, e.g.
 - "Cold Big-Bang" (AA 01)
 - "Weakless universe" (Harnik et al. 06)
- Thus, even successful prediction may not survive when additional parameters are allowed to vary.
 - E.g., Weinberg argument falls apart if p_p for $\xi^4 Q^3$ is rising.
- Bottom line: many anthropic "successes" are fragile and provisional -we need to do the whole problem.

Summary

- * Either infinitely *or finitely* many states creates uncomfortable issues.
- * The infinite, statistically uniform spaces many claim are created be various cosmologies produce uncomfortable issues.
- * The infinite production of different cosmologies with different properties creates uncomfortable issues.

We probably need to get comfortable with the discomfort -we may well learn a lot!