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ABSTRACT

Lambda Cold Dark Matter (ACDM) is now the standard theory of structure formation in the universe. We present the
first results from the new Bolshoi dissipationless cosmological ACDM simulation that uses cosmological parameters
favored by current observations. The Bolshoi simulation was run in a volume 250 ~~! Mpc on a side using
~8 billion particles with mass and force resolution adequate to follow subhalos down to the completeness limit
of Veire = 50 km s~! maximum circular velocity. Using merger trees derived from analysis of 180 stored time
steps we find the circular velocities of satellites before they fall into their host halos. Using excellent statistics of
halos and subhalos (~10 million at every moment and ~50 million over the whole history) we present accurate
approximations for statistics such as the halo mass function, the concentrations for distinct halos and subhalos,
the abundance of halos as a function of their circular velocity, and the abundance and the spatial distribution of
subhalos. We find that at high redshifts the concentration falls to a minimum value of about 4.0 and then rises
for higher values of halo mass—a new result. We present approximations for the velocity and mass functions of
distinct halos as a function of redshift. We find that while the Sheth-Tormen (ST) approximation for the mass
function of halos found by spherical overdensity is quite accurate at low redshifts, the ST formula overpredicts the
abundance of halos by nearly an order of magnitude by z = 10. We find that the number of subhalos scales with

the circular velocity of the host halo as th/sf, and that subhalos have nearly the same radial distribution as dark

matter particles at radii 0.3-2 times the host halo virial radius. The subhalo velocity function N (> Vy,) scales as
V.3, Combining the results of Bolshoi and Via Lactea-II simulations, we find that inside the virial radius of halos
with Ve = 200km s~! the number of satellites is N(> Vi) = (Vaup/58 km s~1)73 for satellite circular velocities
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in the range 4 km sl < Vg < 150km s~ 1.
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1. INTRODUCTION

The Lambda Cold Dark Matter (ACDM) model is the stan-
dard modern theoretical framework for understanding the for-
mation of structure in the universe (Dunkley et al. 2009). With
initial conditions consisting of a nearly scale-free spectrum of
Gaussian fluctuations as predicted by cosmic inflation, and with
cosmological parameters determined from observations, ACDM
makes detailed predictions for the hierarchical gravitational
growth of structure. For the past several years, the best large sim-
ulation for comparison with galaxy surveys has been the Millen-
nium Simulation (MS-I; Springel et al. 2005). Here we present
the first results from a new large cosmological simulation, which
we are calling the Bolshoi simulation (“Bolshoi” is the Russian
word for “big”?). Bolshoi has nearly an order of magnitude bet-
ter mass and force resolution than the Millennium Run. The
Millennium Run used the first-year (WMAP1) cosmological pa-
rameters from the Wilkinson Microwave Anisotropy Probe satel-
lite (WMAP; Spergel et al. 2003). These parameters are now
known to be inconsistent with modern measurements of the
cosmological parameters. The Bolshoi simulation used the lat-
est WMAPS (Hinshaw et al. 2009; Komatsu et al. 2009; Dunkley
et al. 2009) and WMAP7 (Jarosik et al. 2011) parameters, which
are also consistent with other recent observational data.

The invention of CDM (Primack & Blumenthal 1984;
Blumenthal et al. 1984) soon led to the first CDM N-body cos-

3

“Bolshoi” can be translated as (1) big or large, (2) great, (3) important, or
(4) grown-up. The Bolshoi Ballet performs in Bolshoi Theater in Moscow.

mological simulations (Melott et al. 1983; Davis et al. 1985).
Ever since then, such simulations have been essential in order to
calculate the predictions of CDM on scales where structure has
formed, since the nonlinear processes of structure formation
cannot be fully described by analytic calculations. For exam-
ple, one of the first large simulations of the ACDM cosmology
(Klypin et al. 1996) showed that the dark matter autocorrelation
function is much larger than the observed galaxy autocorrelation
function on scales of ~1 Mpc, so “scale-dependent anti-biasing”
was required for ACDM to match the observed distribution of
galaxies. Subsequent simulations with resolution adequate to
identify the dark matter halos that host galaxies (Jenkins et al.
1998; Colin et al. 1999) demonstrated that the required destruc-
tion of dark matter halos in dense regions does indeed occur.

N-body simulations have been essential for determining the
properties of dark matter halos. It turned out that dark matter
halos of all masses typically have a similar radial profile, which
can be approximated by the Navarro-Frenk—White (NFW)
profile (Navarro et al. 1996). Simulations were also crucial for
determining the dependence of halo concentration cyir = Ryi /7
and halo shape on halo mass and redshift (Bullock et al. 2001;
Zhao et al. 2003; Allgood et al. 2006; Neto et al. 2007; Maccio
et al. 2008), and also for determining the dependence of the
concentration of halos on their mass accretion history (Wechsler
et al. 2002; Zhao et al. 2009). Here, Ry, is the virial radius
and ry is the characteristic radius where the log-log slope of
the density is equal to —2. Details are given in Section 3 and
Appendix B.
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Table 1
Cosmological Parameters
Data Hubble 2 Qum Tilt n og Ref.
WMAPS 0.71974%% 0.258 £ 0.030 0.963+0.014 0.796 = 0.0326 Dunkley et al. (2009)
WMAP5+BAO+SN 0.701 £ 0.013 0.279 + 0.013 0.960*401%, 0.817 % 0.026 Dunkley et al. (2009)
X-ray clusters 0.715 £ 0.012 0.260 £ 0.012 (0.95) 0.786 £ 0.011 Vikhlinin et al. (2009)
£0.020?
X-ray clusters+WMAPS (0.719) 0.307%9 (0.963) 0.85*0.04 Henry et al. (2009)
X-ray clusters+WMAPS (0.72 £ 0.08) 0.269 +0.016 (0.95) 0.82 £ 0.03 Mantz et al. (2008)
+SN+BAO
maxBCG + WMAPS (0.70) 0.265 £ 0.016 (0.96) 0.807 £ 0.020 Rozo et al. (2009)
WMAPT+BAO+H, 0.704+%013 0.273 £0.014 0.963 £ 0.012 0.809 + 0.024 Jarosik et al. (2011)
Bolshoi simulation 0.70 0.270 0.95 0.82 e
Millennium simulations 0.73 0.250 1.00 0.90 Springel et al. (2005)
Via Lactea-II simulation 0.73 0.238 0.951 0.74 Diemand et al. (2008)

Notes. Values in parentheses are priors.
4 Systematic error.

One of the main goals of this paper is to provide the basic
statistics of halos selected by the maximum circular velocity
(V.ire) of each halo. There are advantages to using the maximum
circular velocity as compared to the virial mass. The virial mass
is a well-defined quantity for distinct halos (those that are not
subhalos), but it is ambiguous for subhalos. It strongly depends
on how a particular halofinder defines the truncation radius and
removes unbound particles. It also depends on the distance to
the center of the host halo because of tidal stripping. Instead,
the circular velocity is less prone to those complications. Even
for distinct halos the virial mass is an inconvenient property
because there are different definitions of “virial mass.” None
of them is better than the other and different research groups
prefer to use their own definition. This causes confusion in
the community and makes comparison of results less accurate.
The main motivation for using V. is that it is more closely
related to the properties of the central regions of halos and,
thus, to galaxies hosted by those halos. For example, for
a Milky-Way-type halo the radius of the maximum circular
velocity is about 40 kpc (and the circular velocity is nearly the
same at 20 kpc), while the virial radius is about 300 kpc. As
an indication that circular velocities are a better quantity for
describing halos, we find that most statistics look very simple
when we use circular velocities: they are either pure power
laws (abundance of subhalos inside distinct halos) or power
laws with nearly exponential cutoffs (abundance of distinct
halos).

This paper is organized as follows. In Section 2 we give
the essential features of the Bolshoi simulation. Section 3
describes the halo identification algorithm used in our analysis.
In Section 4 we present results on masses and concentrations
of distinct halos. Here we also present relations between V.
and M,;;. The halo velocity function is presented in Section 5.
Estimates of the Tully—Fisher relation are given in Trujillo-
Gomez et al. (2011), where we present detailed discussions
of numerous issues related to the procedure of assigning
luminosities to halos in simulations and confront results with
the observed galaxy distribution. In Section 6 we give statistics
of the abundance of subhalos. The number-density profiles
of subhalos are presented in Section 7. Section 8 gives a
short summary of our results. Appendix A describes details
of the halo identification procedure. Appendix B collects useful
approximation formulas. Appendix C compares masses of halos
found with two different halofinders: the friends-of-friends

(FOF) algorithm and the spherical overdensity halofinder used
in this paper.

2. COSMOLOGICAL PARAMETERS AND SIMULATIONS

The Bolshoi simulation was run with the cosmological
parameters listed in Table 1, together with Qp,, = 0.0469,
n = 0.95. As Table 1 shows, these parameters are compatible
with the WMAP seven-year data (WMAPT7; Jarosik et al. 2011)
results, with the WMAP five-year data (WMAPS), and with
WMAPS combined with Baryon Acoustic Oscillations and
Supernova data (Hinshaw et al. 2009; Komatsu et al. 2009;
Dunkley et al. 2009). The parameters used for the Bolshoi
simulation are also compatible with the recent constraints from
the Chandra X-ray cluster cosmology project (Vikhlinin et al.
2009) and other recent X-ray cluster studies. The Bolshoi
parameters are in excellent agreement with the Sloan Digital Sky
Survey (SDSS) maxBCG+WMAPS cosmological parameters
(Rozo et al. 2009). The optical cluster abundance and weak
gravitational lensing mass measurements of the SDSS maxBCG
cluster catalog are fully consistent with the WMAPS5 data, and
the joint maxBCG+WMAPS analysis quoted in Table 1 reduces
the errors. Figure 1 shows current observational constraints
on the Q) and og parameters. It shows graphically that Bolshoi
agrees with the recent constraints while Millennium is far
outside them.

The MS-I (Springel et al. 2005) has been the basis for
many studies of the distribution and statistical properties of
dark matter halos and for semi-analytic models of the evolving
galaxy population. However, it is important to appreciate that
this simulation and the more recent Millennium-II Simulation
(MS-II; Boylan-Kolchin et al. 2009) used the first-year
(WMAP1) cosmological parameters, which are rather different
from the current parameters summarized in Table 1. The main
difference is that the Millennium simulations used a substan-
tially larger amplitude of perturbations than Bolshoi. Formally,
the value of oy used in the Millennium simulations is more than
30 away from the WMAPS5+BAO+SN value and nearly 40 away
from the WMAP7+BAO+H, value. However, the difference is
even larger on galaxy scales because the Millennium simulations
also used a larger tilt n = 1 for the power spectrum. Figure 2
shows the linear power spectra of the Bolshoi and Millennium
simulations. Because of the large difference in the amplitude,
it is not surprising that the Millennium simulations overpredict
the abundance of galaxy-size halos. The Sheth-Tormen (ST)
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Figure 1. Optical and X-ray cluster abundance plus WMAP constraints on og
and Q. Contours show 68% confidence regions for a joint WMAPS and cluster
abundance analysis assuming a flat ACDM cosmology. The shaded region is the
SDSS optical maxBCG cluster abundance + WMAPS analysis from Rozo et al.
(2009; which is also the source of this figure). The X-ray + WMAPS constraints
are from several sources: the low-redshift cluster luminosity function (Mantz
et al. 2008), the cluster temperature function (Henry et al. 2009), and the cluster
mass function (Vikhlinin et al. 2009). All four recent studies are in excellent
agreement with each other and with the Bolshoi cosmological parameters. The
Millennium I and II cosmological parameters are far outside these constraints.
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Figure 2. Bottom: linear power spectra of the Bolshoi and Millennium simu-
lations at redshift zero. Top: ratio of the spectra. The Millennium simulations
have substantially larger amplitude of perturbations on all scales, resulting in
overprediction of the number of galaxy-size halos at high redshifts.

(A color version of this figure is available in the online journal.)

approximation (Sheth & Tormen 2002) gives a factor of 1.3—1.7
more My, ~ 102 h~! M halos at z = 2-3 for Millennium
as compared with Bolshoi, which is a large difference. Angulo
& White (2010) argue that cosmological N-body simulations
can be rescaled by certain approximations or by other means.
However, the accuracy of those rescalings cannot be estimated
without running accurate simulations and testing particular char-
acteristics.
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Table 2

Parameters of the Bolshoi Simulation
Parameter Value
Box size (h~! Mpc) 250
Number of particles 20483
Mass resolution (£~ M) 1.35 x 108
Force resolution
(h~" kpc, physical) 1.0
Initial redshift 80
Zero-level mesh 2563
Maximum number of
refinement levels 10
Zero-level time step Aa (2-3) x 1073
Maximum number of time steps ~400,000

Maximum displacement 0.10
per time step (cell units)

The Bolshoi simulation uses a computational box
250 h~! Mpc across and 20483 = 8 billion particles, which
gives a mass resolution (one particle mass) of m; = 1.35 x
108 h=! M. The force resolution (smallest cell size) is a phys-
ical (proper) 1 2~! kpc (see below for details). For comparison,
the MS-I had a force resolution (Plummer softening length)
of 5 h=! kpc and the MS-II had 1 2~! kpc. Table 2 gives a
short summary of various numerical parameters of the Bolshoi
simulation.

The Bolshoi simulation was performed with the Adaptive-
Refinement-Tree (ART) code, which is an Adaptive-Mesh-
Refinement (AMR)-type code. A detailed description of the
code is given in Kravtsov et al. (1997) and Kravtsov (1999). The
code was parallelized using Massage Passing Interface (MPI)
libraries and OpenMP directives (Gottloeber & Klypin 2008).
Details of the time-stepping algorithm and comparison with
GADGET and PKDGRAV codes are given in Klypin et al.
(2009). Here we give a short outline of the code and present
details specific for Bolshoi.

The ART code starts with a homogeneous mesh covering the
whole cubic computational domain. For Bolshoi we use a 2563
mesh. The Cloud-In-Cell (CIC) method is used to obtain the
density on the mesh. The Poisson equation is solved on the mesh
with the fast Fourier transform method with periodic boundary
conditions. The ART code increases the force resolution by
splitting individual cubic cells into 2 x 2 x 2 cells with each
new cell having half the size of its parent. This is done for every
cell if the density of the cell exceeds some specified threshold.
The value of the threshold varies with the level of refinement
and with the redshift. Once the hierarchy of refinement cells is
constructed, the Poisson equation is solved on each refinement
level using the Successive Over Relaxation technique with
red—black alternations. Boundary conditions are taken from the
one-level coarser grid. The initial guess for the gravitational
potential is taken from the previous time step whenever possible.

We use the online Code for Anisotropies in the Microwave
Background of Lewis et al. (CAMB; 2000)* to generate the
power spectrum of cosmological perturbations. The code is
based on the CMBFAST code by Seljak & Zaldarriaga (1996).

At early moments of evolution, when the amplitude of pertur-
bations was small, the refinement thresholds were chosen in a
way that allows unimpeded growth of even the shortest perturba-
tions, with wavelengths close to the Nyquist frequency. Ideally,
the distance between particles should be at least two cell sizes:

4 http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm


http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm

THE ASTROPHYSICAL JOURNAL, 740:102 (17pp), 2011 October 20

0.5 — — :

10-5 L Ll o el o el L

0.05 0.1 0.5 1 5 10
k (Mpc/h)
Figure 3. Growth of the power spectrum of perturbations at early stages of
evolution. The full curves show A2 = k3P(k)/27'[2 at redshifts z = 11, 20, and
53 (from top to bottom). The dashed curves show the linear power spectrum.
The vertical line is the Nyquist frequency of particles.

(A color version of this figure is available in the online journal.)

at that separation the force of gravity is Newtonian. In setting
parameters for Bolshoi we came close to this condition: we used
a density threshold of 0.6 particles per cell, which resulted in
effectively resolving the whole computational volume down to
four levels of refinement or, equivalently, to a 4096° mesh. This
condition was kept until redshift z = 11. As the perturbations
grow, get nonlinear, and collapse, it becomes prohibitively ex-
pensive (memory consuming) and not necessary to keep this
strict refinement condition. We gradually increase the threshold
for the fourth refinement level: 0.8 particles until z = 9, 1 parti-
cle until z = 7, 3 particles until z = 1.5, and thereafter we had
5 particles. The same increase of the thresholds was done for
higher refinement levels, for which we started with two particles
at high z and ended with five particles at z = 0.

Figure 3 shows the power spectrum of perturbations at
redshifts z = 11, 20, and 53 and compares it with the linear
theory. A 4096 mesh was used to estimate P(k) in the
simulation, which may underestimate the real spectrum by
3%-5% at the Nyquist frequency due to the finite smoothing
of the density field produced by the CIC density assignment.
Results indicate that the code was evolving the system as it was
expected to linear growth of small perturbations at early stages
and at large scales with no suppression at high frequencies.

The number of refinement levels, and thus the force resolu-
tion, changes with time. For example, there were eight levels at
z = 10, and nine at z = 5, which gives the proper resolution of
0.4 h~! kpc. At z = 1 the tenth level was open with the proper
resolution of 0.5 4! kpc. However, when a level of refinement
opens, it contains only a small fraction of volume and particles.
Only somewhat later does the number of particles on that level
become substantial. This is why the evolution of the force reso-
lution is consistent with nearly constant proper force resolution
of 1 h~! kpc from z =20to z = 0.

The ART code uses the expansion parameter a = (1 + 7)™
as the time variable. Each particle moves with its own time step
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which depends on the refinement level. The zero level defines the
maximum value Aa of the stepping of the expansion parameter.
For Bolshoi Aa = 2 x 1073 fora < 0.8 and Aa = 3 x 1073
for later moments. The time step decreases by a factor of two
from one level of refinement to the next. There were 10 levels
of refinement at the later stages of evolution (z < 1). This gives
the effective number of 400,000 time steps.

The initial conditions for the simulation were created using
the Zel’dovich approximation with particles placed in a homo-
geneous grid (Klypin & Shandarin 1983; Klypin & Holtzman
1997). Bolshoi starts at zj,;y = 80 when the rms density fluc-
tuation Ap/p in the computational box with 20483 particles
was equal to Ap/p = 0.0826. (The Nyquist frequency defines
the upper cutoff of the spectrum, with the low cutoff being the
fundamental mode.) The initialization code uses the Zel’dovich
approximation, which provides accurate results only if the den-
sity perturbation is less than unity. This should be valid at every
point in the volume. In practice, the fluctuations must be even
smaller than unity for high accuracy. With 20483 independent
realizations of the density, one expects to find one particle in
the box to have a 6.50 fluctuation. For this particle the den-
sity perturbation is 6.5 x 0.0826 = 0.55—still below 1.0. The
most dense 100 particles are expected to have a density con-
trast of 5.76 x 0.0856 = 0.49, low enough for the Zel’dovich
approximation still to be accurate.

The Bolshoi simulation was run at the NASA Ames Research
Center on the Pleiades supercomputer. It used 13,824 cores
(1728 MPI tasks each having 8 OpenMP threads) and a cumu-
lative 13 Tb of RAM. We saved 180 snapshots for subsequent
analysis. The total number of files saved in different formats is
about 600,000, which uses 100 Tb of disk space.

For some comparisons we also use a catalog of halos for the
Via Lactea-II simulation (Diemand et al. 2008). This simulation
was run for one isolated halo with maximum circular velocity
Veire = 201 km s~!. Using approximations for the dark matter
profile provided by Diemand et al. (2008), we estimate the virial
mass and radius of the halo to be M,;; = 1.3 x 10'> h=! Mg
and Ry; = 226 h~'kpc. Here we use the top-hat model
with cosmological constant A to estimate the virial radius, as
explained in the next section. The Via Lactea-II simulation
uses slightly different cosmological parameters as compared
with Bolshoi (see Table 1). In particular, the amplitude of
perturbations is 10% lower: og = 0.74.

3. HALO IDENTIFICATION

Let us start with some definitions. A distinct halo is a halo
that does not “belong” to another halo: its center is not inside
of a sphere with a radius equal to the virial radius of a larger
halo. A subhalo is a halo whose center is inside the virial radius
of a larger distinct halo. Note that distinct halos may overlap:
the same particle may belong to (be inside the virial radius of)
more than one halo. We call a halo isolated if there is no larger
halo within twice its virial radius. In some cases we study very
isolated halos with no larger halo within three times its virial
radius.

We use the Bound-Density-Maxima (BDM) algorithm
to identify halos in Bolshoi (Klypin & Holtzman 1997).
Appendix A gives some of the details of the halofinder. Knebe
et al. (2011) present a detailed comparison of BDM with other
halofinders and show the results of different tests. The code lo-
cates maxima of density in the distribution of particles, removes
unbound particles, and provides several statistics for halos in-
cluding virial mass and radius, and maximum circular velocity
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Figure 4. Dependence of maximum circular velocity V. on halo mass for distinct halos at redshift z = 0 (left panel) and redshift z = 3 (right panel). The circular

velocity at any moment mostly scales as Veire o¢ My’

3. The figure shows deviations from this scaling law. The deviations are related with the halo concentration.

Full curves on both plots show median V¢, and dashed curves show 90% limits. Dots represent individual halos with large masses.

(A color version of this figure is available in the online journal.)
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Throughout this paper we will use V. and the term circular
velocity to mean maximum circular velocity over all radii r.
When a halo evolves over time, its V., may also evolve. This
is especially important for subhalos, which can be significantly
tidally stripped and can reduce their Vi over time. Thus, we
distinguish instantaneous V.. and the peak circular velocity
over halo’s history.

We use the virial mass definition M,; that follows from the
top-hat model in an expanding universe with a cosmological
constant. We define the virial radius R,;; of halos as the radius
within which the mean density is the virial overdensity times
the mean universal matter density pm = Qmpcie at that redshift.
Thus, the virial mass is given by

4
Mvir =0

: Aviepm R} 2

vir *

For our set of cosmological parameters, at z = 0 the virial radius
R.i; is defined as the radius of a sphere with overdensity of 360 of
the average matter density. The overdensity limit changes with
redshift and asymptotically goes to 178 for high z. Different
definitions are also found in the literature. For example, the
often used overdensity 200 relative to the critical density gives
mass Mgy, which for Milky-Way-mass halos is about 1.2-1.3
times smaller than M,;.. The exact relation depends on halo
concentration.

Overall, there are about 10 million halos in Bolshoi. Halo
catalogs are complete for halos with V. > 50 km s7!
(My; ~ 1.5 x 10! h=! M). We track the evolution of each
halo in time using ~180 stored snapshots. The time difference
between consecutive snapshots is rather small: ~(40-80) Myr.

4. HALO MASS AND CONCENTRATION FUNCTIONS

Throughout most of the paper we characterize halos using
their circular velocity. However, V. tightly correlates with
halo mass, as demonstrated in Figure 4. For distinct halos with
My, = 10'2-10"* 2! My, 90% of halos have their circular
velocities within 8% of the median value. Even 99% of halos are
within only 15%-20%. The variations are substantially larger
for subhalos: 90% of subhalos with masses 10''-10'3 2=! M
lie within 20% of the median V... On average, the circular
velocity increases with mass. The V.j.—M,;; relation depends on
halo concentration c(M,;;), and, thus, studying this relation gives
us a way to estimate c(M,;) without making fits to individual
halo profiles. Any halo mass profile can be parameterized as
M(r) = Myf(r/ro), where My and ry are parameters with
mass and radius units and the function f(x) is dimensionless. If
Xmax 18 the dimensionless radius corresponding to the maximum
circular velocity, then we can write the following relation
between the maximum circular velocity and the virial mass
(Klypin et al. 2001):

f(xmax) c ~1/3 1/2 1/3
Vcirc = |G——F— 73 Mvir /3 s 3
|: fc) xmaxp ©
R M,; 4
P = R Vl; = ?AvirpchMs (4)
X
f(x)=ln(1+x)—1+x, (5)
Rvir
c= , X =—, Xmax = 2.15. (6)
Iy s

Here, Ayi; is the overdensity limit that defines the virial radius;
per and Qyp are the critical density and the contribution of
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Figure 5. Evolution of concentration of distinct halos with redshift. The full
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with mass.

(A color version of this figure is available in the online journal.)

matter to the average density of the universe, respectively.
The first two equations are general relations for any density
profile. Equations (5) and (6) are specific for NFW: r; is the
characteristic radius of the NFW profile, which is the radius at
which the logarithmic slope of the density is —2. At z = 0,
for our cosmological model, A,; = 360 and Q, = 0.27.
Calculating the numerical factors in Equations (3)-(6) we get
the following relation between virial mass, circular velocity, and
concentration at z = 0:

6.72 x 1073 M2 /¢

Vcirc(Mvir) = P
JIn(T+¢) —c¢/(1+¢)

)

where mass M, is in units of A~' M, circular velocity is in
units of km s~!. This relation gives us an opportunity to estimate
halo concentration directly for a given virial mass and circular
velocity.

Alternatively, one may skip the c(M) term and simply use
power-law approximations for the Vi i.—M,; relation that give a
good fit to numerical data.

For distinct halos:

Vcirc(Mvir) =28x 1072Mvir0.316’ (8)
and for subhalos:
Veire(Mgup) = 3.8 x 1077 M. ©)

Here velocities are in km s~ and masses are in units of 2~ M.

Equations (3)—(6) can be considered as equations for halo
concentration: for a given z, My, and V., one can solve
them to find c. For quiet halos the result must be the same
as what one gets from fitting halo density profiles with the NFW
approximation: two independent parameters (in our case My,
and Vi) uniquely define the density profile. However, by using
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Table 3
Parameters of Fit Equation (12) for Virial Halo Concentration
Redshift o Mo/ h™! Mg Cmin c(102 A= My)
0.0 9.60 e . 9.60
0.5 7.08 1.5 x 10Y7 5.2 7.2
1.0 5.45 2.5 x 101 5.1 5.8
2.0 3.67 6.8 x 10'3 4.6 4.6
3.0 2.83 6.3 x 1012 42 44
5.0 234 6.6 x 101 40 5.0

only two parameters, we are prone to fluctuations. In order to
reduce the effects of fluctuations we apply Equations (3)-(6)
to the median values of V. for each mass bin. For each mass
bin with the average M,;; we find the median circular velocity
Veire (Myir, 7). We then solve Equations (3)-(6) and get median
halo concentrations c(My;;, z). One can also find concentration
for each halo and then take the median—the result is the same
because for a given mass the relation between ¢ and V. is
monotonic. This procedure minimizes effects of fluctuations and
gives the median halo concentration for a given mass. Mufioz-
Cuartas et al. (2011) applied our method to their simulations
and reproduced results of direct density profile fitting. Prada
et al. (2011) state that this method recovers results of halo
concentrations ¢(M) in MS-I (Neto et al. 2007) with deviations
of less than 5% over the whole range of masses in the simulation.

Figure 5 shows the concentrations for redshifts z = 0-5. For
redshift zero we get the following approximation:

—0.075
Mvir )

1004 M, (o

(M) = 9.60 (

for distinct halos. For subhalos we find

M. b —0.12
c(Mgyp) = 12 <+) ) (11)
™ 1012 4= Mg

Subhalos are clearly more concentrated than distinct halos
with the same mass, which is likely caused by tidal stripping.
The differences between subhalos and distinct halos on average
are not large: a 30% effect in halo concentration.

We also study the evolution of distinct halo concentration
with redshift. Figure 5 shows the concentrations for redshifts

z = 0-5. Results can be approximated using the following
functions:
Moo . My, —0.075
C(Myir, 2) = Co\2) | 571+,
"\ 102 0T M,
My \*%
X |1+ —= , (12)
Mo(2)

where co(z) and My(z) are two free factors for each z. Table 3
gives the parameters for this approximation at different redshifts.
For convenience we also give the concentration for a virial mass
1012 p-1 M and the minimum value of concentration cp;,. The
simulation box for Bolshoi is not large enough to find whether
there is a minimum concentration for z < 0.5. For these epochs
the table gives the value of concentration at 105 h=! My as
predicted by the analytical fits.

The curves in Figure 5 look different for different redshifts.
Typically the concentration declines with redshift and the shape
of the curves evolves. Another interesting result is that the high-
z curves show that the halo concentration has an upturn: for
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Figure 6. Evolution of halo concentration for halos with two masses indicated
on the plot. The dots show results of simulations. For the reference the dashed
lines show a power-law decline ¢ o (1 + z)~!'. Concentrations do not change
as fast as the law predicts. At low redshifts z < 2 the decline in concentration
is ¢ o« 8 (dot-dashed curves), where § is the linear growth factor. At high
redshifts the concentration flattens and then slightly increases with mass. For
both masses the concentration reaches a minimum of ¢, ~ 4-4.5, but the
minimum happens at different redshifts for different masses. The full curves are
analytical fits with the functional form of Equation (13).

(A color version of this figure is available in the online journal.)

the most massive halos the concentration increases with mass.
In order to demonstrate this more clearly, we study in more
detail the evolution with redshift of the halo concentration for
halos with two masses: 3 x 10! 2~! M and 3 x 102 2~ M.
Note that the masses are the same at different redshifts. So,
this is not the evolution of the same halos. Figure 6 shows the
results. Just as expected, in both cases at low redshifts the halo
concentration declines with redshift. The decline is not as steep
as often assumed ¢ oc (1+z)~!;itis significantly shallower even
at low z. For z < 2 a power-law approximation ¢ o 46(z) is a
much better fit, where §(z) is the linear growth factor. It is also
a better approximation because the evolution of concentration
should be related to the growth of perturbations, not to the
expansion of the universe. At larger z the concentration flattens
and slightly increases at z > 3. The upturn is barely visible for
the larger mass, but it is clearly seen for the 3 x 10" A~' Mg
mass halos. These and other results show that the concentration
in the upturn does not increase above ¢ ~ 5 though it may
be related with the finite box size of our simulation. There is
also an indication that there is an absolute minimum of the
concentration ¢y, & 4 at high redshifts. Relaxed halos® show a
slightly stronger upturn indicating that non-equilibrium effects
are not the prime explanation for the increasing of the halo
concentration.

The following analytical approximations provide fits for
the evolution of concentrations for fixed masses as shown in

5 Relaxed halos are defined as halos with offset parameter Xofr < 0.07 and
with spin parameter A < 0.1, where X, is the distance from the halo center to
its center of mass in units of the virial radius.
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Figure 6:
c(Myir, 2) = c(Myir, O[3 (2) + (87 (2) = DI (13)

here, §(z) is the linear growth factor of fluctuations normalized
to be §(0) = 1 and « is a free parameter, which for the masses
presented in the figure is ¥ = 0.084 for M =3 x 10'' h=! M,
and x = 0.135 for 10 times more massive halos with M =
3x 102 h~! My,

It is interesting to compare these results with other simula-
tions. Zhao et al. (2003, 2009) were the first to find that the con-
centration flattens at large masses and at high redshifts. Their
estimates of the minimum concentration are compatible with
our results. Figure 2 in Zhao et al. (2003) shows an upturn in
concentration at z = 4. However, the results were noisy and
inconclusive: the text does not even mention it.

Maccio et al. (2008) present results that can be directly
compared with ours because they use the same definition of
the virial radius and estimate masses within spherical regions.
Their models named WMAPS have parameters that are very
close to those of Bolshoi. There is one potential issue with
their simulations. Maccio et al. (2008) use a set of simulations
with each simulation having a small number of particles and
either a low resolution, if the box size is large, or very small
box, if the resolution is small. For all the halos in their
simulations the approximation for concentration is c¢(Myi) =
8.41(My;; /10" h=! M)~%198, Bolshoi definitely gives more
concentrated halos. The largest difference is for cluster-size
halos. For My, = 105 4! Mg our results give ¢ = 5.7 while
Maccio et al. (2008) predict ¢ = 4.0—a 40% difference. The
difference gets smaller for galaxy-size halos: 14% for M;, =
1021~ " My and 2% for My, = 104! My. Comparing
results for relaxed halos we find that the disagreement is
smaller. Mufioz-Cuartas et al. (2011) give ¢(M;;) = 9.8 for
M, = 102571 Mg as compared with our results (also for
relaxed halos) of ¢(M,;;) = 10.1—a 3% difference. For clusters
with M,;; = 10" h=! M, the disagreement is 18%.

We can also compare our results with those of MS-I (Neto
et al. 2007), although MS-I has different cosmological pa-
rameters and a different power spectrum. Because the anal-
ysis of MS-I was done for the overdensity 200, we also
made halo catalogs for this definition of halos. Neto et al.
(2007) give the following approximation for all halos: cyp0 =
7.75(M»o0/10'2 7! M@)’O'“. For halos in the Bolshoi sim-
ulation ¢y = 7.2(M200/1012 h! M@)_O'O75. Thus, the MS-
I 200 is 8% larger than the concentrations in Bolshoi for
M, = 1012471 M, with a small (~10%) difference for M,;, =
10-10" h~! M. For M;; = 102 h~' M, in the MS-II and
Aquarius simulations Boylan-Kolchin et al. (2010) give an even
larger concentration of ¢y = 12.9, which is 1.3 times larger
than what we get from Bolshoi. Most of the differences are
likely due to the larger amplitude of cosmological fluctuations
in MS simulations because of the combination of a larger og and
a steeper spectrum of fluctuations.

The mass function of distinct halos is a classical cosmological
result (e.g., Warren et al. 2006; Reed et al. 2007, 2009; Tinker
et al. 2008; Maccio et al. 2008). Figure 7 presents the results
for the Bolshoi simulation together with the predictions of the
Sheth—Tormen (ST) approximation (Sheth & Tormen 2002; see
also Appendix B). We find that the ST approximation gives
an accurate fit for z = 0 with the deviations less than 10%
for masses ranging from M,; = 5 X 10° h~! Mg to My =
5 x 10" h~! M. However, the ST approximation overpredicts
the abundance of halos at higher redshifts. For example, at
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(A color version of this figure is available in the online journal.)

z = 6 for halos with M;; ~ (1-10) x 10'1 4! Mg the ST
approximation gives a factor of 1.5 more halos as compared
with the simulation. At redshift 10 the ST approximation gives
a factor of 10 more halos than what we find in the simulation.
We introduce a simple correction factor which brings the
analytical predictions much closer to the results of simula-
tions. We find that the ST approximation multiplied by the
following factor gives less than 10% deviations for masses
5x10°h~ " My — 5 x 10" h~! Mg, and redshifts z = 0-10:

Fs) — (5.5018)*
@)= 1 +(5.5008)*°

where § is the linear growth-rate factor normalized to unity at
z = 0 (see Equation (B2)).

Our results are in good agreement with Tinker et al. (2008),
who present the evolution of the mass function for z = 0-2.5 for
halos defined using the spherical overdensity method. Atredshift
zero, their mass function for overdensity A = 200 relative to the
mean mass density is 20% above the ST approximation. This
is expected because masses defined with spherical overdensity
A = 200 are typically 10%-20% larger than virial masses,
which are used in our paper. Results in Tinker et al. (2008)
together with our work indicate that at higher redshifts the mass
function gets further and further below the ST approximation.
In addition, the shape of the mass function in simulations gets
steeper: there is a greater disagreement at larger masses. Tinker
et al. (2008) argue that this behavior indicates that the mass
function is not “universal”: it does not scale with the redshift
only as a function of the amplitude of perturbations o (M) on
scale M (see Appendix B for definitions). Our results extend this
trend to redshifts at least as large as z = 10. Our results also
qualitatively agree with Cohn & White (2008), who present
spherical overdensity halo masses at z = 10. They also find
substantially lower mass functions as compared with the ST
approximation, though the differences with the approximation
are somewhat smaller than what we find.

(14)
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These results are at odds with those obtained with the FOF
method (e.g., Lukic et al. 2007; Reed et al. 2007, 2009; Cohn &
White 2008). The FOF halo mass function scales very close to
the “universal” o (M) behavior. The reason for the disagreement
between spherical overdensity and FOF halo-finding methods is
likely related to the fact that FOF has a tendency to link together
structures before they become a part of a virialized halo. This
happens more often with the rare most massive halos, which
have a tendency to be out of equilibrium and in the process
of merging. As a result of this, FOF masses are artificially
inflated. Cohn & White (2008) studied case-by-case some halos
at z = 10 and conclude that in their simulations FOF assigned
to halos almost twice as much mass. Comparison of the ST
predictions with the Bolshoi results shown in Figure 7 points to
the difference of a factor of 2.5 in mass for z = 10. Because of
the steep decline of the mass function, a factor of 2.5 increase in
mass translates to a factor of 10 increase in the number density
of halos. This correction to the FOF masses must be taken
into account when making any estimates of the frequency of
appearance of high-z objects.

In Appendix C we also directly compare FOF masses with
those obtained with the BDM code. At z = 8.8 the FOF masses
with the linking parameter / = 0.20 were on average 1.4 times
larger than the BDM masses. In addition, the spread of estimates
was very large with FOF in many cases giving three to five
times larger masses than BDM. Analysis of individual cases
shows that this happens because FOF links large fragments of
filaments, not just an occasional neighboring halo. The situation
is different at z = 0. Here both BDM and FOF (I = 0.17) give
remarkably similar results, though some spread is still present
(Tinker et al. 2008). We speculate that the difference in the
behavior at high and low z is related to the slope of the power
spectrum of perturbations probed by halos at different redshifts.

These differences between different definitions of masses and
radii of halos indicate the inherent weakness of masses as halo
properties: in the absence of a well-defined physical process
responsible for halo formation, masses are defined somewhat
arbitrarily. We know that halos do not form according to the
often used top-hat model. We also know that the virial radius
is ill-defined for non-isolated interacting objects. Nevertheless,
we use one definition or another and we pay a price for this
vagueness. These uncertainties in masses also motivate us to use
another, much better defined quantity—the maximum circular
velocity.

5. HALO VELOCITY FUNCTION

The velocity function for distinct halos is shown in Figure 8.
It declines very steeply with velocity. At small velocities the
power slope is —3 with an exponential cutoff at large velocities.
We find that at all redshifts the cumulative velocity function can
be accurately approximated by the following expression:

V o
n(>V)= AV 3exp (— [—} ) , (15)
Vo
where the parameters A, Vj, and « are functions of redshift. For
z = 0 we find
A =1.82x 10*(h~" Mpc/km s~ )73,
a =25, (16)
Vo = 800km s~ 1.

The evolution of the parameters should not directly depend on
the redshift, but on the amplitude of perturbations. Indeed, when



THE ASTROPHYSICAL JOURNAL, 740:102 (17pp), 2011 October 20

10!

1072

1073

)(h~"Mpc)-?
1T \HH‘

cire

104

n(>Vv

1075

z‘:5 \\% \3 \\I2£' 1\‘] \

\\‘ (|

106

5x101 107 5x10*

V,, (km s7)

103

KLyYPIN, TRUJILLO-GOMEZ, & PRIMACK

108 [ —— [T T 7
C"’J [ -
T L i
1)
E |
4
< |
@)
=3
T 10t =
£ LR §
8 i N \ Ei v ]
AT R !
T T oo N 1
© A\ & %
®'3 r by § y \\‘: 4 7
= AN Ll ~
z:6f3‘§ 5% 3$ 2 L0
1000 Lo Y A\ | IR S B
o0 100 500 1000

V. (km s71)
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(A color version of this figure is available in the online journal.)
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Figure 9. Parameters of the velocity function at different amplitudes of
perturbations og(z). Open circles show parameters found by fitting n(>V, z) at
different redshifts. The curves are power-law fits given by Equations (15)—(17).
The top right panel shows the evolution of og with redshift as predicted by the
linear theory. Circles on the curve indicate the same moments as on the other
three panels.

we plot the parameters as functions of og(z) as predicted by the
linear theory at different redshifts, the functions are very close to
power laws as demonstrated by Figure 9. We find the following
fits to the parameters:

A =152 x 10*65 "*(z)(h~'"Mpc/ km s71)~3,

a=1+2.1503"(2),
0d(2)

1 +2.50¢(2)
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Figure 10. Velocity function of satellites compared with the velocity function
of distinct halos. The bottom panel shows the cumulative function of subhalos
(bottom full curve) and distinct halos (top full curve). The circular velocity used
for the plot is the peak over each halo’s history. The dashed curves are analytical
approximations. The top panel shows the ratio of the number of subhalos and
distinct halos (full curve) and an analytical approximation for the ratio (dashed
curve).

6. ABUNDANCE OF SUBHALOS

Figure 10 shows the cumulative velocity function n(> Vi)
of all subhalos in Bolshoi regardless of the circular velocity
of their host halos. We use maximum circular velocities over
the whole evolution for both subhalos and distinct halos. The
top panel shows the ratio of the number of subhalos to the
number of distinct halos with the same limit on the circular
velocity. Note that for a given V., most of the halos are
distinct. This may sound a bit counter intuitive. Because each
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(A color version of this figure is available in the online journal.)

distinct halo has many subhalos, one would naively expect
that there are many more satellites as compared to distinct
halos. This is not true. The number of satellites is large, but
most are small. When we count small distinct halos, their
number increases very fast and we always end up with more
distinct halos at a given circular velocity. The abundance of
subhalos can be approximated with the same function given by
Equation (15) as for the distinct halos. However, the parameters
of the approximation are different. For subhalos that exist at
z = 0 and for which we use peak velocities over their history of
evolution, we find

A=62x10°(h""'My/kms )™
a=22, Vy=480kms ' (18)

The remarkable similarity of the shapes of the velocity functions
of halos and subhalos suggests a simple interpretation for the
difference in their parameters: subhalos were typically accreted
at the epoch when the velocity function of distinct halos had the
same parameters « and V) as the velocity function of subhalos
at present. For the parameters given by Equations (17) and (18)
we get a typical accretion redshift, z,.. & 1.

In order to study statistics of subhalos belonging to different
parent halos we split our sample of distinct halos into sub-
samples with different ranges of circular velocities. For each
subhalo we use either its z = 0 circular velocity or the peak
value over its entire evolution. Figure 11 shows both the present
day and the peak velocity distribution functions for distinct
halos with masses and velocities ranging from galaxy-size ha-
los to clusters of galaxies. The average circular velocities for
each bin presented in the figure are (from bottom to top):
Vihost = (163, 190, 235, 340, 470, 677, 936) km s~!. The num-
ber of halos in each bin varies from 200 for the most massive
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Figure 12. Dependence of the number of subhalos on the circular velocity of
their hosts. Here we count all subhalos with circular velocities larger than 0.3 of
their host circular velocity. The bottom panel shows results for V. estimated at
z = 0 and the top panel is for the peak Vi over the history of each subhalo. For

z = O circular velocities the abundance scales as Vhlo/j (dashed curve). For peak

circular velocities the number of subhalos is larger and the scaling is steeper:
N Vl120/331 (full curve). For comparison, the dashed curve is the same as in the
bottom panel.

(A color version of this figure is available in the online journal.)

halos (Viost = 800—-1200 km s~ 1) to 30,000 for the least mas-
sive halos with Vi, = 160—180 km s~!. The increase in the
abundance of substructure for more massive hosts is consis-
tent with the results of Gao et al. (2004), who give a factor of
2.0-2.5 increase for host halos from mass ~2.5 x 1022~ M
to ~10'"3 A~! M. Van den Bosch et al. (2005), Taylor & Babul
(2005), and Zentner et al. (2005) came to similar conclusions
using their (semi)analytic models.

In order to more accurately measure the dependence of
the abundance of subhalos on the circular velocity of the
host halo, we analyze the number of satellites with circular
velocities larger than 0.3 of the circular velocity of their hosts:
Vet > 0.3Vhose- This approximately corresponds to the mass
ratio of M/ Mpost ~ 0.3° & 0.027. The threshold of 0.3 is a
compromise between the statistics of satellites and the numerical
resolution of the simulation. Figure 12 shows the number of
satellites No3(Viost) for hosts ranging from Vi ~150 km s~!
to ~1000 km s~!. The number of satellites scales as a power-
law No3 o< Vi with the slope y depending on how the circular
velocity is estimated. For the z = 0 velocities the slope is
y = 1/2, and it is larger for the peak velocities: y = 2/3.

There is an indication that the dependence of the cumulative
number of satellites on their circular velocity N (> Vsy) gets
slightly shallower for more massive host halos. Figure 13
illustrates the point. Here we study the most massive (but also
rare) halos. Again, the number of satellites is approximated
by a power law. However, the slope is about —2.75, which is
somewhat shallower than the slope of —3 found for smaller host
halos.

We compare some of our results with the Via Lactea-II
(VL-II) simulation (Diemand et al. 2008). We do not use the
published results because the analysis of VL-II was done using
overdensity 180 relative to the matter density, which gives
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Figure 13. Velocity function of subhalos for 40 most massive clusters with
average Myir = 3.2 x 104 p~1 Mg and circular velocity Veire = 1100 km s~L.
The velocity function is nearly a power law with the slope —2.75.

(A color version of this figure is available in the online journal.)

a larger radius for halos as compared with the virial radius.
We use the halo catalog of VL-II, which lists coordinates and
circular velocities of individual halos. We also use published
parameterization of the dark matter density in order to estimate
the virial radius of VL-II. When comparing with VL-II, we
select halos in Bolshoi in a narrow range of circular velocities
Ve = 195-205 km s~!. There are 4960 of those with the
average virial mass of My; = 1.26 x 10'2h~! My, which is
close to the virial mass My;; = 1.3 x 102! Mg of Via Lactea
II. Figure 14 presents results of the velocity function of subhalos
in those host halos. The dashed line in the figure is the power
law N(>V) = (V/61km s~')~3, which gives a good fit to the
data for a wide range of circular velocities from 4 km s~! to
100 km s~'. Bolshoi has slightly more subhalos by about 10%.
This is a small difference and it goes in line with the expectation
that a smaller normalization of cosmological fluctuations gives
fewer subhalos. In the same vein, the Aquarius simulations have
an even higher (by 30% as compared with VL-II) number of
subhalos, probably because of an even larger amplitude.

Summarizing all the results, we conclude that the cumulative
velocity function of z = 0 subhalos can be reasonably accurately
approximated by the power law

N(>x) = 1.7 x 1073 V,}2x 73, (19)
x = Vaw/ Vhosts  * < 0.7, (20)

where the circular velocity of the host is given in units of km s .
Again, these results are broadly consistent with the N-body
simulations of Gao et al. (2004) and with the semi-analytic
models of van den Bosch et al. (2005), Taylor & Babul (2005),
and Zentner et al. (2005). For peak circular velocities we obtain
=9.0 x 1074V22x =3,

N(>x) host 201

7. THE SPATIAL DISTRIBUTION OF SATELLITES

The spatial distribution of satellites has numerous astrophys-
ical applications. Among others, these include the survivability
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Myi; ~ 1.3 x 10> h=! M. The dashed line is a power law with slope —3,
which provides an excellent fit to both simulations. In both simulations satellites
are found inside a sphere with virial radius Ry;,.

(A color version of this figure is available in the online journal.)

of dark matter subhalos (e.g., Moore et al. 1996; Klypin et al.
1999; Colin et al. 1999), the potential annihilation signal of
dark matter (e.g., Kuhlen et al. 2008; Springel et al. 2008; Ando
2009), and the motion of satellites as a probe for masses of
isolated galaxies and groups (e.g., Prada et al. 2003; Klypin
& Prada 2009; More et al. 2009). The relative abundance of
satellites and dark matter is a form of bias. Thus, studying the
distribution of satellites in simulations sheds light on the physics
of bias and, thus, on the formation of dwarf galaxies. There is
an additional reason to study the satellites in the Bolshoi simu-
lation: comparison with high-resolution simulations such as Via
Lactea gives an additional test of resolution effects and provides
limits on the applicability of the simulation.

The spatial distribution of satellites has been extensively
studied in simulations (Ghigna et al. 1998, 2000; Nagai &
Kravtsov 2005; Diemand et al. 2008; Springel et al. 2008;
Angulo et al. 2009). One of the main issues regarding satellites
is to what degree their distribution is more extended than that
of the dark matter. As a small halo falls into the gravitational
potential of a larger halo, it experiences tidal stripping and
dynamical friction. It may also experience interaction with
other subhalos before and during infall. Tidal stripping reduces
the mass of subhalos, resulting in a very strong radial bias:
subhalos selected by mass have relatively low number-density
in the central region of their hosts. However, stripping affects the
central parts of subhalos much less. This is why the distribution
of subhalos is more concentrated when selected by their circular
velocity (Nagai & Kravtsov 2005). Depending on the mass
and concentration of the subhalo and on its trajectory, the
role of different physical effects may vary. Interplay of these
processes results in a complicated picture of the distribution
of the satellites. Numerical effects add to the complexity of
the situation: it is a challenge to preserve and to identify
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satellites with Veire > 4 km s~! in the Via Lactea-1I simulation normalized to
the average (number-)density for each component, respectively. The satellites
have nearly the same overdensity as the dark matter for radii R = (0.3-2) Ryj,.
The number density of satellites falls below the dark matter at smaller radii. The
dashed curve is the number density of satellites with Viirc > 80 km s~! found
at z = 0 in the Bolshoi simulation for host halos selected to have the same
circular velocity as Via Lactea-II. In the outer regions with R = (0.5-1.5)Ryi;
the satellites follow the dark matter very closely. In the inner regions the Bolshoi
results are 20%—30% below the much higher resolution simulation Via Lactea-
II, presumably because of numerical effects.

o [T
—

vir

(A color version of this figure is available in the online journal.)

small subhalos throughout the whole history of evolution of
the universe.

The traditional way of displaying results is to normalize both
the dark matter and satellites to the average mass inside the virial
radius. When presented in this way, results routinely show that
there are relatively more satellites in the outer parts of halos.
For example, Angulo et al. (2009) find that independently of
subhalo mass, subhalos are a factor of two more abundant than
dark matter around the virial radius of their hosts. If that were
correct, this would imply some kind of physical mechanism to
produce more satellites outside of the virial radius, a far-reaching
conclusion. However, below we show that this not correct.

The main issue here is the normalization. If a simulation
includes only a small region, a typical setup for modern high-
resolution simulations, there is no sensible way to normalize
satellites. This is not the case given the statistics of Bolshoi.
We can reliably normalize the abundance of halos even with
small mass and circular velocities. The velocity function of all
distinct halos is given by Equation (15). There are 20%-25%
subhalos at given circular velocity. Using the velocity function
and the fraction of subhalos from Bolshoi, we estimate the
average number of all halos with any given V... These estimates
are used to normalize the number-density profile of subhalos
in VL II presented in Figure 15. A comparison with the dark
matter profile is quite interesting: there is very little bias in the
Via Lactea distribution of subhalos for radii R = (0.3-2)R.;;.
Subhalos are not more extended as compared with the dark
matter. However, Via Lactea-II is just one halo and there may
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be some effects related with cosmic variance. We use halos
in Bolshoi that have similar characteristics as Via Lactea-II:
very isolated halos (no equal mass halo inside 3 R,;;) and
circular velocities in the range Ve = (200-220) km s~! with
corresponding masses My; = (1.3-1.5) x 102 h~! M. For
Bolshoi halos we find a small ~10% antibias. In the inner
regions (R < 0.5 Ry;;) the number density of satellites goes
below the results of Via Lactea, but the difference is not large:
20%-30%. Some of the differences with Via Lactea-II may be
real because subhalos in Bolshoi are more massive, and, thus,
they must experience stronger dynamical friction. However, it
is more likely that most of the differences are numerical: after
all, Bolshoi has substantially worse resolution than Via Lactea-
II. Regardless of the cause of those small differences, it is
quite remarkable that simulations with five orders of magnitude
difference in mass resolution produce results that deviate only
by 10%-20%.

Comparison with Via Lactea-II is difficult because for these
masses (Myi; ~ 10'2 h~! M) Bolshoi has only a few subhalos
per each host. In order to have a better picture of the spatial
distribution of satellites, we study more massive halos for
which our resolution is relatively better. Again, we select
isolated halos: those with no larger halo within twice the virial
radius. Figure 16 shows the results for hosts with very different
masses. The top panel shows results for 82 halos with circular
velocities in the range 900-1100 km s~! (average virial mass
2.5 x 10" h=! M,). The bottom panel shows 2200 halos with
Veire = 280-300 km s~! and average My = 5 x 1027~ M.
Results are very similar for such different host halos: satellites
follow the dark matter very closely for radii R = (0.5-2)Ry;;
with possible small (~10%) antibias. In the central region the
subhalo abundance goes below the dark matter by a factor of
2-2.5at R = 0.2 Ry;.
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It is interesting to compare the Bolshoi results with Nagai
& Kravtsov (2005), who present profiles for eight clusters with
almost the same masses as in the top panel of our Figure 16. If
we change their normalization for subhalos selected by present-
day circular velocity (their Figure 3) in such a way that the dark
matter profile matches the overdensity of satellites at the virial
radius (we use a factor of 0.8 to match our definition of virial
radius), then there is excellent agreement with Bolshoi, with
both simulations giving the ratio of the dark matter density to
the number density of satellites ~2 at R = 0.2 R,j;.

8. CONCLUSIONS

Using the large halo statistics and high resolution of the
Bolshoi simulation we study numerous properties of halos and
subhalos. We present accurate analytical approximations for
such characteristics as the halo and subhalo abundances and
concentrations, the velocity functions, and the number-density
profiles of subhalos. Detailed discussions of different statistics
have already been given in relevant sections of the text. Here we
present a short summary of our main conclusions.

Velocity function. Our main property of halos is their maxi-
mum circular velocity V.. As compared to virial masses, cir-
cular velocities are better quantities for characterizing the phys-
ical parameters of the central regions of dark matter halos. As
such, they are better quantities for relating the dark matter ha-
los and galaxies, which they host. We present the halo velocity
functions at different redshifts and show that they can be ac-
curately described by Equations (15)—(17). The halo circular
velocity function n(>V) declines as a power-law V=3 at small
velocities and has a quasi-exponential cutoff at large circular
velocities.

Mass function of distinct halos. We find that the ST approx-
imation (Sheth & Tormen 2002) gives an accurate fit to the
redshift-zero mass function: errors are less than 10% for masses
in the range 5 x 10" h~! My — 5 x 10" h=! M. However,
the approximation overpredicts the halo abundance at higher
redshifts and gives a factor of 10 more halos than the Bolshoi
simulation at z = 10. The correction factor Equation (14) brings
the accuracy of the approximation back to the ~10% level for
redshifts z = 0 — 10. It also breaks the universality of the fit: the
mass function cannot be written as a function of only the rms
fluctuation o (M) on mass scales M. These results depend on
how halos are defined with the FOF algorithm giving different
answers than the spherical overdensity method. See Appendix C
for details.

Concentrations of halos. The halo concentration ¢(M,i, z)
appears to be more complex than previously envisioned. For a
given redshift z, the concentration first declines with increasing
mass. Then it flattens out and reaches a minimum of ¢, ~ 4-5
with the value of the minimum changing with redshift. At even
larger masses c(My;;) starts to slightly increase. This “upturn” in
the concentration is a weak feature: the change in concentration
is only 20%. Moreover, it cannot be detected at low redshifts,
z < 0.5. If our estimates are correct, at z = 0 the upturn
should start at masses about M, ~ 108 4! M —clusters this
massive do not exist. However, at z > 2 the upturn is visible
at the very massive tail of the mass function. It is not clear
what causes the upturn. The upturn is even stronger for relaxed
halos, which indicates that non-equilibrium effects cannot be
the reason for the upturn. At large redshifts the halos that show
the upturn are very rare: their mass is much larger than the
characteristic mass M, of halos existing at that time. Most of
them likely experience very fast growth. They also represent
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very high-o peaks of the density field. It is known that the
statistics of rare peaks are different from those of more “normal”
peaks (Bardeen et al. 1986). One may speculate that this may
result in a change in halo concentration. More extensive analysis
of halo concentrations is given in F. Prada et al. (2011, in
preparation).

Subhalo abundance. The cumulative abundance of satellites
is a power law with a steep slope: N(>V) o V3. Combing our
results with those of the Via Lactea-II simulation (Diemand et al.
2008), we show that the power law extends at least from 4 km g1
to 150 km s~! for Milky-Way-mass halos and yields the correct
abundance of large satellites such as the Large Magellanic Cloud
(Busha et al. 2011). The abundance of satellites increases with

the circular velocity and mass of the host halo as N o< Vhlo/j For
example, this means that in relative units a cluster of galaxies has
2.5 times more satellites than the Milky Way, in good agreement
with previous numerical results (Gao et al. 2004). Equations (20)
and (21) give approximations for the abundance of satellites.

Subhalo number-density distribution. One of the main issues
here is the number density of satellites relative to the dark matter
in the outer regions of halos. Some previous simulations indi-
cated substantial (a factor of two) overabundance of satellites
around the virial radius. We do not confirm this conclusion. Our
re-analysis of the Via Lactea-II simulation as well as the results
from the Bolshoi simulation unambiguously show that there is
no overabundance of satellites. In the Via Lactea-II simulation
the satellites follow very closely the distribution of dark matter
for radii R = (0.3-2)R;;. In the Bolshoi simulation we find a
small (10%) antibias at the virial radius.
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our paper and for allowing us to use his FOF halo catalog. We
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for reading this long manuscript. We acknowledge support of
NSF grants to NMSU and NASA and NSF grants to UCSC.
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APPENDIX A
BOUND-DENSITY-MAXIMA HALOFINDER

We use a parallel (MPI+OpenMP) version of the Bound-
Density-Maxima algorithm to identify halos in Bolshoi (Klypin
& Holtzman 1997). For detailed comparison with other halofind-
ers see Knebe et al. (2011). The code detects both distinct halos
and subhalos. The code locates maxima of density in the dis-
tribution of particles, removes unbound particles, and provides
several statistics for halos including virial mass and radius, as
well as maximum circular velocity. The parameters of the BDM
halofinder were set such that the density maxima are not allowed
to be closer than 10 2~ kpc. We keep only the more massive
density maximum® if that happens. This is mostly done to save
computer time. It is also consistent with the force resolution
of Bolshoi. Halo catalogs obtained with a smaller minimum
separation of 7.5 2! kpc did not include more halos.

6 We keep the peak that has the largest mass inside a sphere of radius
10 2~ kpe.
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Removal of unbound particles is done iteratively. It goes in
steps:

1. Find the bulk velocity of a halo: the velocity with which
the halo moves in space. The rms velocities of individual
particles are later found relative to this velocity. We use the
central region of the halo (the 30 particles closest to the
halo center) to find the bulk velocity.

2. Find the halo radius: the minimum of the virial radius and
the radius of the declining part of the density profile (radius
of the density minimum, if it exists).

3. Find the rms velocity of dark matter particles and the
circular velocity profile. Estimate the halo concentration.

4. Find the escape velocity as a function of radius and remove
particles that exceed the escape velocity. Use only bound
particles for the next iteration.

The whole procedure (steps 1-4) is repeated four times. If
the mass or radius of a halo is too small (too few particles), the
density maximum is removed from the list of halo candidates.

If two halos (1) are separated by less than one virial radius, (2)
have masses that differ by less than a factor of 1.5, and (3) have
a relative velocity less than 0.15 of the rms velocity of dark
matter particles inside the halos, we remove the smaller halo
and keep only the larger one. This is done to remove a defect
of halo-finding where the same halo is identified more than
once. This removal of “duplicates” (halos with nearly the same
mass, position, and velocity) happens only during major merger
events when instead of two merging nearly equal-mass halos the
halofinder sometimes finds three to five halos. Unfortunately,
this also has the side effect of removing one of the major merger
halos. This is a relatively rare event and it affects only the very
tip of the subhalo velocity function.

‘We use the virial mass definition M,;, that follows from the
top-hat model in an expanding universe with a cosmological
constant. We define the virial radius R,;. of halos as the radius
within which the mean density is the virial overdensity times
the mean universal matter density p,, = QwmpOcrie at that redshift.
Thus, the virial mass is given by

4
Mvir = -0

3 AVirlOm R3

vir * (Al)
Equation (B1) gives an analytical approximation for Ay;.. For
our set of cosmological parameters, at z = 0 the virial radius
R, is defined as the radius of a sphere with overdensity of 360
times the average matter density. The overdensity limit changes
with redshift and asymptotically approaches 178 for high z.

Overall, there are about 10 million halos in Bolshoi (8.8
Matz = 0,123 M at z = 2, 48 M at z = 5). Halo
catalogs are complete for halos with Vi, > 50 km g1
(Myi; ~ 1.5x10' h=! M). We do post-processing of identified
halos. In particular, for distinct halos we find their properties
(e.g., mass, circular velocity, density profiles) without removing
unbound particles. For most, but not all, halos it makes little
difference. For example, the differences in circular velocities
are less than a percent for halos with and without unbound
particles. Differences in mass can be a few percent depending
on halo mass and on environment.

In order to track the evolution of halos over time, we find
and store the 50 most bound particles (fewer, if the halo does
not have 50 particles). Together with other parameters of the
halo (coordinates, velocities, virial mass, and circular velocity)
the information on most bound particles is used to identify the
same halos at different moments of time. The procedure of halo
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tracking starts at z = 0 and goes back in time. The final result is
the history (track) of the major progenitor of a given halo. The
halo track may be lost at some high redshift when the halo either
becomes too small to be detected or the tracking algorithm fails
to find it. A new halo track may be initiated at some redshift if
there is a halo for which there was no track at previous snapshots
(smaller redshifts). This happens when a halo merges and gets
absorbed by another halo.

With ~180 snapshots stored, the time difference between
consecutive snapshots is rather small. For example, the snapshot
before the z = 0 snapshot has z = 0.0027 with a time difference
of 37 Myr. The difference in time between snapshots stays
on nearly the same level (42-46 Myr) until z = 0.23 when
it becomes twice as large. We start with z = 0 halos and
identify them in the previous snapshot. If a halo is not found
at that snapshot, we try the next one. Altogether, we may try
six snapshots. Typically, 95% of halos are found in the previous
snapshot, an additional 2%-3% in the next one and ~1% in even
earlier ones. Overall, about (0.2%-0.3)% of halos cannot be
tracked at any given snapshot: they are either lost because their
progenitor gets too small or because of numerical problems. The
number depends on the redshift and on halo mass. Figure 17
shows the fraction of halos tracked to given redshift for halos
that exist at z = 0. More massive halos are tracked to larger
redshifts. Half of all halos with V. = 50 km s~! are tracked to
7 = 4 and half of all halos with V. = 200 km s~! are tracked
toz="7.

APPENDIX B
AUXILIARY APPROXIMATIONS

For completeness, here we present some approximations used
in the text. For the family of flat cosmologies (Qy + Q4 = 1) an
accurate approximation for the value of the virial overdensity
Ayir 1s given by the analytic formula (Bryan & Norman 1998):

Avir = (1872 + 82x — 39x2)/Q(2),
where Q(z) = pn(2)/peric and x = Q(z) — 1.

(B1)
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Figure 18. Left: the halo mass function at redshift z = 8.8. The full curve shows the ST approximation. Open circles show FOF halos identified using the linking
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Right: the distribution of mass around nine massive halos (Mror ~ 101 p~1 M) at redshift z = 8.8. Each panel shows half of the dark matter particles in cubes of
1 h~! Mpc size. The center of each cube is the exact position of the center of mass of the corresponding FOF halo. The effective radius of each FOF halo in the plots
is 150-200 1! kpc. Circles indicate distinct halos and subhalos identified by the spherical overdensity algorithm BDM. The radius of each circle is equal to the virial
radius of the halo. The numbers in the top left corner of each panel show the ratio of FOF mass to that of SO. Panels (a, ¢, g) show relatively good cases when the
center of a halo in the simulation is close to the center of an FOF-detected halo. Panel (e) shows a major merger: FOF linked the two halos together. In panels (b, d, f,

h, i) FOF linked together halos that formed long and dense filaments.
(A color version of this figure is available in the online journal.)

The linear growth-rate function §(a) used in og(a) is defined

as
8(a) = D(a)/D(1), (B2)

where a = 1/(1 + z) is the expansion parameter and D(a) is

D(a)_§ Qo' V1+x3 /x 324 B3)
2\ Qo x32 0 Jy [1+x3]3/2°
QA0>1/3
X = . a, (B4)
<QM,O

where Q1 o and 4 o are the density contributions of matter and
the cosmological constant at z = 0, respectively. For Qy > 0.1
the growth-rate factor D(a) can be accurately approximated
by the following expressions (Lahav et al. 1991; Carroll et al.
1992):

5/2)aQ

D) = — O/attn ., (BS)
Qv — Qp + (1+Qun/2)(1 +Q,/70)

Qmla) = (1 + x>, (B6)

Qu(a) =1 - Quml(a). (B7)

For Qu 9 = 0.27 the error of this approximation is less than
7 x 1074,

The ST approximation (Sheth & Tormen 2002) for the distinct
halos mass function can be written in the following form:

w _o doM) ) (BS)
-, = er,0 s (O
aM M., 00 ’Oo(M)dM
Msd
=2.75 x 10" (h~"Mpe) > Qu o> —2 Uf(a), (B9)
’ odM
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where M is the halo virial mass and

2 (o)
o’(M) = &? K2P()W(k, M) dk, (B10)
27'[ 0
2
flo) = AJi—b[l + (bx?)™%3x exp <—b%) , (B11)
X = 1'686, A=0322, b=0.707. (B12)
o (M)

Here, P(k) is the power spectrum of perturbations and W(k,
M) is the Fourier transform of the real-space top-hat filter
corresponding to a sphere of mass M. For the cosmological
parameters of the Bolshoi simulation the rms density fluctuation
o (M) can be approximated by the following expression:

M) = 16.9y0'41 (B13)
T T T 1.102y920 + 622,033
M ~1
S R Bl14
Y [1012 hl M@] (B14)

The accuracy of this approximation is better than 2% for masses
M > 10" h~! Mg,

APPENDIX C
FOF AND SO MASSES

In order to clarify the situation with the difference between the
results of the halo mass function in the Bolshoi simulation and
in the ST approximation at high redshifts, we under-take more
detailed analysis of halos at redshift z = 8.8. We also study
results obtained using the FOF halofinder with three linking
lengths: / = 0.17, 0.20, and 0.23. We start by considering only
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Figure 19. Left panels: ratio of masses for the same halos identified by FOF with / = 0.20 and by the spherical overdensity BDM halofinders at redshift z = 8.8. On
average, the FOF halos have masses 1.4 times larger than those obtained using SO. In addition, there is a significant spread in the mass ratios. Right panels: the same
for z = 0 with a linking length / = 0.17. Top panels show the distribution of mass ratios Mso/Mpor with halos selected by the SO mass. Bottom panels show the

mass ratios for individual halos.

the most a massive halos with masses larger than 10" 2~ M.
Each of those halos should have more than 700 particles.
The spherical overdensity algorithm (BDM) identified 55 halos
above this mass threshold. The FOF found 121, 255, and 602
halos with linking lengths / = 0.17, 0.20, and 0.23 above the
same mass threshold. It is clear that FOF gives significantly
higher masses. It is also very sensitive to the particular choice
of the linking length.

At z = 8.8 the ST approximation predicts a factor of four
to six more halos as compared with what we find using the
spherical overdensity algorithm. Because FOF with / = 0.20
gives about five times more halos, it makes a very good match
to the ST approximation. This is consistent with the results of
Cohn & White (2008) and Reed et al. (2009). The left panel in
Figure 18 shows the mass functions at z = 8.8. At all masses
FOF with [ = 0.20 is well above the SO results and is close to
the ST predictions.

However, FOF results are very misleading. We compare the
SO halos (as found by the BDM code) with the FOF halos
found using / = 0.20. For halos with more than 100 particles
both algorithms find essentially the same distinct halos, but FOF
typically assigns larger masses to the same halos. The right
panel in Figure 18 illustrates the point. There is a large variety
of situations. We typically find that when there is a well-defined
halo center and the halo dominates its environment, both the
FOF and the SO masses are reasonably consistent (e.g., panel
(a)). However, FOF has a tendency to link fragments of long
filaments. In such cases the formal center of the FOF halo may
not even be found in a large halo. Surprisingly, there are many
of those long filaments at the high redshifts.

Figure 19 presents statistics for the ratios of FOF and SO
masses. Left panels show the most massive 17,000 halos with
SO masses larger than 10" 2~! M, at 7 = 8.8. There is a large
spread of masses and on average FOF masses are 1.4 times
larger than the SO counterparts. We made the same analysis for
the most massive 10,000 halos with the SO masses larger than
5x 102 h~! Mg at z = 0 using [ = 0.17 for FOF. Remarkably,
both halofinders produce similar results—a big contrast with
high redshifts. Overall, there is a small offset in the mass ratios
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with SO producing 1.05 times larger masses. However, the
difference is remarkably small.

Thus, as we stated in Section 4, FOF halo masses are similar
to SO ones at low redshifts, but systematically larger at high
redshifts.
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