Momentum Driven AGN Feedback In Galaxy Merger Simulations

Jackson DeBuhr (UC Berkeley)
With C-P. Ma and E. Quataert
Introduction

• Observations suggest BH-Galaxy evolution link
• Feedback invoked as explanation
• Previous work uses largely similar models
 • Springel et al. 2005
 • Kazantzidis et al. 2005
 • Johansson et al. 2009
 • Booth & Schaye 2009
• Can simulation constrain AGN feedback physics?
Method

- Perform major mergers implementing new feedback model
 - Accretion via angular momentum transport
 - Feedback via radiation pressure
- Tree-SPH Gadget-3
 - Includes star formation model of Springel & Hernquist 2003
 - Added BH growth and feedback

DeBuhr, Quataert, Ma 2010, arXiv:1006.3312
Model: Accretion

\[\dot{M} = 3\pi\alpha\Sigma \frac{c_s^2}{\Omega} \]

- Accretion via angular momentum transport
 - Bondi rate physically inappropriate
- Accretion radius \(R_{\text{acc}} \sim 188\text{pc} \)
 - Volume average of SPH particle properties
- \(\alpha \sim 0.05 \)
Model: Feedback

\[\dot{\rho} = \frac{\tau}{c} \min \left(L_{edd}, \eta \dot{M} c^2 \right) \]

- Feedback via radiation pressure
- Applied inside \(R_{\text{acc}} \)
- Directed radially outward
- \(\tau \sim 10 \), IR optical depth
Simulations

• Fiducial Galaxy
 • \(M_{\text{gal}} = 5 \times 10^{10} \, M_\odot \), \(f_g = 0.1 \)
 • \(R_d = 3.5 \, \text{kpc} \), \(Z_0 = 0.71 \, \text{kpc} \)

• Orbit
 • Parabolic, prograde
 • \(r_i = 142 \, \text{kpc} \), \(r_{\text{peri}} = 14.2 \, \text{kpc} \)

• Model parameters
 • \(\alpha = 0.05 \), \(\tau = 10 \), \(R_{\text{acc}} = 188 \, \text{pc} \)

• Varied model and galaxies
Fiducial Simulation
Self-Regulation
Self-Regulation

• Balance gravity and feedback

\[\tau \frac{L}{c} = \frac{GM M g}{R^2} \]

with

\[\sigma^2 = \frac{GM}{2R} \]

\[\dot{M}_{crit} = \frac{4f_g}{\tau \eta c G} \sigma^4 \]

• Independent of \(\alpha \)
Self-Regulation

- Feedback clears R_{acc}
- \dot{M} approaches \dot{M}_{crit}
Other Results

- Robust SF and M_{BH} with parameter variation
- Little gas blow-out
M-\(\sigma\) Relation

- \(\sigma_{\text{LOS}}\)
- Median of 1000 sight lines
- Scaled to \(\tau=25\)
- Flattening at low mass (tentative)
ISM Modeling

- SH03 c_s too high
 - Reduce P by ~ 10
- After first passage
 - Lower c_s gas fragments
 - Dense SF knots spiral into center
- Highlights importance of ISM modeling
 - See also Teyssier et al. 2010
Summary

- Robust integrated quantities
 - M^*, M_{BH}
- Model can match observed $M_{BH} - \sigma$
 - Requires high optical depth
 - Suggests additional feedback modes required

Next steps

- Use improved fueling model
- Improve radiation transport
- Connect with detailed simulations of central region