High resolution cosmological simulations of z~2 disks

Shy Genel

With:
Reinhard Genzel, Thorsten Naab, Amiel Sternberg, Nicolas Bouché
• The observations: context and open questions
• The cosmological simulations: model & setup
• Clumps survival
• Comparisons to observations
The SINS survey

- High-z disks, unlike local spiral galaxies, are:
 - Clumpy
 - Gas rich
 - Thick
 - “turbulent”
Things we’d like to know

• What drives the high velocity dispersion in $z \sim 2$ disks? Is it ‘real’ turbulence?

• How long do the clumps survive? Do they migrate inwards to form a bulge?
Things we’d like to know

• What drives the high velocity dispersion in z~2 disks? Is it ‘real’ turbulence?

• How long do the clumps survive? Do they migrate inwards to form a bulge?
The simulation setup

• Cosmological zoom-in simulations in a 100 Mpc box

• Resolution levels: $M_{\text{gas}}=6 \times 10^6 M_{\odot}$ (200 pc @ $z=2$);
 $M_{\text{gas}}=7 \times 10^5 M_{\odot}$ (100 pc);
 $M_{\text{gas}}=1 \times 10^5 M_{\odot}$ (50 pc)

• Halos of $\sim 10^{12} M_{\odot}$ @ $z=2$, selected by halo formation history:
 • (1) no $>1:3$ merger @ $2<z<3$
 • (2) halo growth rate $> 500 M_{\odot}/\text{yr}$
 • These criteria represent $\sim 15\%$ of the halos of $\sim 10^{12} M_{\odot}$
The model

• Gadget-2 (Springel+ 2005) version from Davé, Oppenheimer, Finlator (2006..2010):
 • Primordial + metal cooling
 • Haardt & Madau (2001) UV background
 • Momentum-driven super-wind (kinetic FB) model (following Murray, Quataert & Thompson 2005)
 • Metal and mass (gas recycling) feedback from: SNII, SNIa and AGB stars
The model – modifications

• Effective EOS for star-forming gas:
 • Isothermal with a polytropic ($\gamma_{\text{eff}}=4/3$) pressure floor \Rightarrow Jeans mass resolved

• Schmidt law for star-formation
 • $\text{sSFR} \sim \rho^n \Rightarrow$ Kennicutt 1998 star-formation law

• Explicit threshold on Σ_g for star-formation
The role of the wind

- Reduced M_\ast/M_h (‘galaxy formation efficiency’)
- Increased gas fractions
- Increased sSFR
The role of the wind

- Flat rotation curves, TFR

[Graphs showing the effect of winds on circular velocity curves and the TFR with/without winds.]
Disk stability

stiff EOS
(Springel & Hernquist 2003)

$\gamma=4/3$ EOS
Clump survival and the SF law

- Interplay between T_{SF}/η and dynamical time:

- Kennicutt 1998 law \Rightarrow Transient clumps

- Constant $T_{\text{SF}} = 1\text{Gyr}$ (Genzel+ 2010, Daddi+ 2010) \Rightarrow Enough time to virialize
Mock images and dust

Observed optical

Observed J-band

Observed H-band
Mock images and dust

Observed optical Observed J-band Observed H-band
Clump kinematics

• Clumps are minima in vertical velocity dispersion, $\sigma \sim 20$ km/s

• Clumps have circular velocities $(GM/R)^{0.5}$, ~ 50-100 km/s

• But these are hard to observe, because...
Clump kinematics

- Clumps are not virialized, i.e. they are collapsing until they are dispersed
- ‘beam smearing’

⇒ Best observed resolution may be able to dynamically detect the clumps only marginally
Conclusions and prospect

- Momentum-driven winds and resolution of \(~100\) pc make gas-rich star-forming disks at \(z\sim 2\)

- A model where clumps disrupt before they virialize seems consistent (or to say the least, as consistent as other models) with observations

- What next:
 - More (and more representative) halos
 - Investigate the origin of large velocity dispersions
 - Quantitative/statistical comparison with observations