H$_2$ in Dwarf Galaxies

- Dwarfs are an extreme environment for SF

- SF traces H$_2$ better than HI and total H
 (for example, Bigiel et al 08)

- H$_2$ important coolant at 200 K < T < 3000 K
 (Glover & Abel 08, Gnedin et al 10)
H$_2$ in Dwarf Galaxies

- Dwarfs are an extreme environment for SF

However, H$_2$ is difficult to observe in dwarfs

- SF traces H$_2$ better than HI and total H
 (for example, Bigiel et al 08)

- H$_2$ important coolant at 200 K < T < 5000 K
 (Glover & Abel 08, Gnedin et al 10)
Simulations of H$_2$ In Galaxies

- Until recently, most simulations of galaxies did not include H$_2$

- New Simulations with GMCs/H$_2$
 (Gnedin et al 09, 10a, 10b, Papadopoulos & Pelupessy10, Pelupessy et al 06, Pelupessy & Papadopoulos 09, Robertson & Kravtsov 08)
 - Link H$_2$, metallicity and Kennicutt-Schmidt Law
Simulations of H$_2$ In Galaxies

- Until recently, most simulations of galaxies did not include H$_2$

- New Simulations with GMCs/H$_2$
 (Gnedin et al 09, 10a, 10b, Papadopoulos & Pelupessy 10, Pelupessy et al 06, Pelupessy & Papadopoulos 09, Robertson & Kravtsov 08)
 - Link H$_2$, metallicity and Kennicutt-Schmidt Law

- H$_2$ in cosmological sims. to z=0
The Code

- **Gasoline** (Wadsley et al. 04), an SPH code with
 - Cosmic UV background radiation
 - H & He ionization
 - Metal cooling
 - Metal diffusion
 - Star formation
 - Supernovae feedback

- **Which reproduces**
 - Damped Lyman-α systems (Pontzen et al. 08, 10)
 - Mass-metallicity relation (Brooks et al. 07)
 - Broken exponential disks in spirals (Roskar et al. 08)
 - HI holes
 - Tully-Fisher relation (Governato et al. 07)
 - Realistic dwarfs (Governato et al. 10)
H$_2$ Implementation

- H$_2$ abundances per particle
 - Integrated through simulation
 - Non-equilibrium
 - Based on local formation and destruction rates

Isolated MW-like Disk Galaxy:
Z = Z$_\odot$, LW = 10 X Draine field

(FUSE, Gillmon et al. 06 & Wolfire et al. 08)
Formation and Destruction

- Forms on dust (metals)
 (Wolfire et al 08)
 - Metallicity
 - Density
 - Gas clumpyness
 (McKee & Ostriker et al 07)

- Destroyed by LW radiation
 - Flux from local young stars
 - Self-shielding and shielding by dust
 (Draine & Bertoldi 96)
 - Column length/density
 (Pavlovski et al 02)
 - Metallicity
A Dwarf Galaxy Simulated 4 Ways

- \(\Lambda \text{CDM} \) cosmology
- Zoomed-in initial conditions
- Final Galaxy:
 - \(M_{\text{vir}} = 4 \times 10^{10} M_\odot \)
 - \(V_{200} = 58 \text{ km/s} \)
- Resolution
 - \(M_{\text{GP}} \approx 4 \times 10^4 M_\odot \)
 - \(h \geq 30 \text{pc in disk} \)
Star-Formation Law

- Probabilistic, based on local gas properties

- Formation time: $t_{\text{dyn}} \propto \rho^{-1/2}$
- Efficiency: c^*
- Threshold density allowed: ρ_{min}

(Stinson et al 06)
Comparing Four Simulations

- No H$_2$, Standard SF
 - $c^* = 0.1$, $\rho_{\text{min}} = 10$ amu/cc

- H$_2$, Standard SF
 - $c^* = 0.1$, $\rho_{\text{min}} = 10$ amu/cc

- H$_2$, H$_2$ based SF
 - $c^* = H_2/(HI + H_2)$ 0.1, $\rho_{\text{min}} = 0.1$ amu/cc

- H$_2$, High-H$_2$ based SF
 - $c^* = H_2/(HI + H_2)$ 0.1, $\rho_{\text{min}} = 0.1$ amu/cc,
 - $H_2/(HI + H_2) \geq 0.1$
Reproducing the Resolved Kennicutt-Schmidt Law at $z=0$

- HI
- Mock THINGS
 (Walter et al 08)
 observation
Reproducing the Resolved Kennicutt-Schmidt Law at z=0

- HI
- Mock THINGS
 (Walter et al 08) observation
- H$_2$
Reproducing the Resolved Kennicutt-Schmidt Law at $z=0$

- HI
 - Mock THINGS
 (Walter et al 08) observation
- H$_2$
- SFR
 - Mock FUV and 24μm observations
 Sunrise, Jonsson 06
Reproducing the Resolved Kennicutt-Schmidt Law at z=0

- HI
- Mock THINGS (Walter et al. 08)
- H₂
- SFR
 - Mock FUV and 24µm observations

Bigiel et al. 08

![Graph showing the Kennicutt-Schmidt Law comparison between observations and mock data.
]
Stellar Profiles

- No H$_2$
- H$_2$
- H$_2$ SF
- High H$_2$ SF

Diagram showing the stellar density as a function of radius for different conditions.
Stellar Profiles

No H$_2$

High H$_2$ SF

Sunrise, Jonsson 06
Star-Formation Histories

- No H$_2$
- H$_2$
- H$_2$ SF
- High H$_2$ SF
Conclusions

- More accurate modeling of physics
- Resolved Kennicutt-Schmidt Law similar in all simulations
- H$_2$ extends young stellar disks
- H$_2$ extends SFH
Future Work

- Star formation maps at high redshift
- Wider range of galaxy masses at similar or higher resolution
 - Scaling relations
- Increasing mass resolution
 - Mock CO observations
- Comparisons to ALMA