Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

Mia S. Bovill

with Massimo Ricotti

University of Maryland
The Smallest Galaxies

Minihalos DO NOT initiate gas condensation by Lyman-\(\alpha\) cooling.

\[T_{\text{vir}} < 10,000 \text{ K} \quad \text{or} \quad M_{\text{dm}} < 10^8 \text{ M}_\odot \quad \text{or} \quad v_{\text{max}} < 20 \text{ km/s} \]

They are extremely sensitive to feedback effects and will not form stars unless they can form and retain significant amount of \(\text{H}_2\).

\(\text{H}_2\) photo-dissociation: Negative feedback
Suppress galaxy formation

\(\text{UV} \quad 11.3-13.6 \text{ eV} \)
The Smallest Galaxies

Minihalos DO NOT initiate gas condensation by Lyman-α cooling.

\[T_{\text{vir}} < 10,000 \text{ K} \quad \text{or} \quad M_{\text{dm}} < 10^8 \text{ M}_\odot \quad \text{or} \quad v_{\text{max}} < 20 \text{ km/s} \]

They are extremely sensitive to feedback effects and will not form stars unless they can form a significant amount of H\(_2\).

Ionizing UV radiation catalyzes H\(_2\) formation.
What is a Fossil?

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-fossil</td>
<td>$v_{\text{max}}(z=0) > v_{\text{filter}}$</td>
<td>ie. SMC</td>
</tr>
<tr>
<td>polluted fossil</td>
<td>$v_{\text{max}}(z=0) < v_{\text{filter}}$ but $\max(v_{\text{max}}) > v_{\text{filter}}$</td>
<td>ie. Pegasus</td>
</tr>
<tr>
<td>true fossil</td>
<td>$v_{\text{max}}(z=0) < v_{\text{filter}}$ AND $\max(v_{\text{max}}) < v_{\text{filter}}$</td>
<td>ie. Draco and CVn I</td>
</tr>
</tbody>
</table>
Hybrid Initial Conditions

The final pre-reionization output is transformed in a 1 Mpc3 box of particles.

We duplicate this box, adding perturbations to account for density variations with $l > 1$ Mpc.

Each HR particle in the resulting N-body simulation represents a pre-reionization halo.

Unique IDs allow us to retrieve the stellar properties at $z = 0$ of halos $> 3 \times 10^6$ M$_\odot$.

Ricotti et al (2002a, 2002b)
Simulations

Run with Gadget 2 (Springel, 2005) on the University of Maryland HPCC Deepthought and analyzed with AHF (Knollmann & Knebe, 2009).

<table>
<thead>
<tr>
<th>Run C</th>
<th>Run D</th>
</tr>
</thead>
<tbody>
<tr>
<td>box = 50^3 Mpc3 h$^{-3}$</td>
<td>box = 50^3 Mpc3 h$^{-3}$</td>
</tr>
<tr>
<td>PR outputs used = 8.3</td>
<td>PR outputs used = 8.3, 10.2, 12, 14</td>
</tr>
<tr>
<td>z_{init} = 8.3</td>
<td>z_{init} = 10.2</td>
</tr>
<tr>
<td>$m_{\text{high res}} = 3 \times 10^5 - 3 \times 10^8 , M_\odot$</td>
<td>$m_{\text{high res}} = 3 \times 10^5 - 3 \times 10^8 , M_\odot$</td>
</tr>
<tr>
<td>$m_{\text{min}} = 3 \times 10^5 , M_\odot$</td>
<td>$m_{\text{min}} = 3 \times 10^5 , M_\odot$</td>
</tr>
<tr>
<td>$\epsilon = 1 \text{ kpc}$</td>
<td>$\epsilon = 1 \text{ kpc}$</td>
</tr>
<tr>
<td>MW.1 = $1.82 \times 10^{12} , M_\odot$</td>
<td>MW.2 = $0.87 \times 10^{12} , M_\odot$</td>
</tr>
<tr>
<td></td>
<td>MW.3 = $1.32 \times 10^{12} , M_\odot$</td>
</tr>
</tbody>
</table>
The Ultra-Faint Dwarfs as Fossils of the First Galaxies

- dIrr
- dE
- classical MW dSph
- MW ultra-faints
- classical M31 dSph
- M31 ultra-faints
- fossils detectable by SDSS
- fossils not detectable by SDSS

\[\Sigma_V \text{ and } r_{hl} \text{ are not in agreement with predictions for true fossils.} \]

Bovill & Ricotti (2009, 2010a-in prep)
The Ultra-Faint Dwarfs as Fossils of the First Galaxies

Bovill & Ricotti (2009, 2010a-in prep)

Undetected dwarfs have higher M/L but the same velocity dispersion!
Match of ultra-faints in M/L is independent of mass estimator.
Undetected dwarfs would have $[\text{Fe/H}] < -3$
$[\text{Fe/H}]$ of the “green” dwarfs are consistent with a primordial fossil origin.
Observational Sample

An observed fossil dwarf is defined as:
- ~ dSph (no gas, diffuse, roughly spherical stellar population)
- ~ SFH dominated by an old, metal poor population
- \(v_{\text{max}} < 20 \text{ km s}^{-1} \) : \(\sigma_* < \sim 10-15 \text{ km s}^{-1} \)

Classical dwarfs: fossils as defined in Ricotti & Gnedin (2005) with \(L_V < 10^6 L_\odot \).

Ultra-faint dwarfs: \(R > 50 \text{ kpc} \) whose stellar properties are consistent with our true fossils.

<table>
<thead>
<tr>
<th></th>
<th>R < 50 kpc</th>
<th>R > 50 kpc</th>
</tr>
</thead>
<tbody>
<tr>
<td>tidal</td>
<td>Ursa Major II, Segue I & II, Willman I</td>
<td>Pisces II</td>
</tr>
<tr>
<td>non-tidal</td>
<td>Coma Ber.</td>
<td>Bootes I & II, CVn I & II, Hercules, Leo IV, Leo T, Ursa Major I</td>
</tr>
</tbody>
</table>

Gnedin & Kravtsov (2006), MSB & Ricotti (2010a, in-prep)
Fossil Distributions

MW.2 and MW.3 from Run D with SDSS detection limits applied (Walsh et al, 2009)

Bovill & Ricotti (2010b-in prep)
Non-fossils are any subhalo which was able to form stars after reionization. All of the non-fossils contain a primordial population.

CAUTION: Since these objects may have formed stars after reionization, the z=0 luminosity function will shift to the right with a lower slope relative to the primordial one.
Fossils have undergone no significant baryonic evolution after reionization. Unlike the non-fossils, their primordial luminosities directly determine the z=0 luminosity function.
“Primordial” Luminosity Function

Dominated by fossils for $L_V < \sim 10^4 L_\odot$, and by non-fossil for $L_V > \sim 10^4 L_\odot$.
"Primordial" Luminosity Function

Includes all known dwarfs with $R > 50$ kpc.

Ultra-faint sample is corrected for SDSS sky coverage and completeness (Walsh et al, 2009)

Sample is complete to the right of the dashed lines.
“Primordial” Luminosity Function

Where are the bright satellites!?
Which one is not like the others?

Majority of the non-fossils have undergone > 4-5 major mergers!
Fluffing the Non-Fossils

Stars initially form at the center of a dark matter halo.
Ghost Halos

Kinetic energy from the repeated collisions heats the primordial stellar population.

Primordial stars become a diffuse “ghost halo” around a dIrr which is below the SDSS detection limits.

This ghost halo will be the first to go in an interaction with another halo.
Introduction - Simulations – Properties – Distribution – **Ghost Halos**

Bovill & Ricotti (2010b-in prep)
Take Home Points

• The stellar properties of the ultra-faint dwarfs are consistent with those of a primordial population in size, luminosity, velocity dispersion, M/L and [Fe/H].

• In the primordial model there is an undetected population of even dimmer dwarfs with higher M/L, [Fe/H] of -3 or lower, and the same σ_* as the ultra-faints.

• True fossils in our simulation are able to reproduce the distribution of fossil satellites around the Milky Way and there are no true fossils with $L_V > 10^6 L_\odot$.

• We overproduce subhalos with $L_V > 10^4$-$10^5 L_\odot$ at all radii by as much as an order of magnitude.

• The most effective way to lower the number of luminous subhalos while preserving the fossil population is to assume that the non-fossils (dIrr and dE) near the MW lost > 99% of their primordial populations.

• The primordial population of isolated non-fossils would be retained in a diffuse “ghost halo” of $\tau > 12$ Gyr, [Fe/H] < -2 stars.
Questions?