

Gas Accretion & Outflows from Redshift z~1 Galaxies

David C. Koo

Kate Rubin, Ben Weiner, Drew Phillips, Jason Prochaska, DEEP2, TKRS, & AEGIS Teams UCO/Lick Observatory, University of California, Santa Cruz 14 August 2012 Galaxy Formation Workshop, UCSC

GAS FLOWS DESERVE AN OLYMPIAN GOLD MEDAL

for influence on galaxy formation and evolution

Their amount, densities, velocities, T, Z:

- 1) directly affect the key components of stellar populations: SFR-history, ages, metallicity, IMF?
- 2) Directly control stellar structure & kinematics
- 3) Affect dust extinction and scattering -> SED
- 4) Induce feedback from SMBH & starbursts
- 5) Enrich the IGM and environment (clusters)
 - YET, our observations of this critical component are almost nil in comparison to its importance

5) Summary

OUTFLOW GALACTIC WINDS are UBIQUITOUS from z~0.5 to 1.4 among STAR-FORMING GALAXIES

INFLOWS appear RARE (few %) but due to BI-POLAR WINDS, and accounting for INCLINATION, may actually be common (40%)

5) Summary

Traditional Method for Studying Galaxy Halos & IGM at High Redshift

• Use galaxies as Background Sources for their own gas & those of foreground sources.

PROS: Inflow vs Outflow; huge numbers; high surface density; not too bright for HST; work in data-rich regions; better match of volume for simulations; extended backgd source. CONS: much lower S/N --but can stack; need blue galx to see UV; stellar light contamination; no radial info

BASIC DATA for UV MgII Survey at Redshift z ~ 1.4

See Weiner+09 for details

SPECTRA from DEEP2 Keck Redshift Survey:

[OII] emission for velocity reference;UV Mg II absorption and emission line strengths and line profiles for study of foreground gas flows.velocity width for dynamical mass & escape velocity

SAMPLE SELECTION: from full DEEP2 (32,308); see MgII 2800A at redshifts z ~ 1.4 (1406); with Spitzer MIPS 24um for dusty SFR (194); with HST for morph, size, incl., merger (119);

CFHT Optical & Palomar K band Images: get luminosities (B), colors (U-B), & stellar masses

HST images: morphology, merger, size, inclination

Stack of 1406 DEEP2 galaxies at redshifts $z \sim 1.35$ -1.40 shows strong absorption lines of cool gas (Mg II and Mg I) with outflow winds moving at many 100's km/s.

201

W.M. KECK DESERVATORY

Implications of z ~ 1.4 MgII Results for models of Galaxy Formation and Galactic Winds

Very Strong (55%) Absorption:

almost all galaxies in the sample have outflows --; substacks show non-dependence on luminosity, color (within sample), SFR, stellar mass, morphology; typical massive SF galaxies (not just dwarfs) had winds; winds appear not to globally quench SF Sawtooth Absorption Profile: median outflow velocity ~ 250 km/s with extension to 500 km/s for 10% depth and up to 1000 km/s (> escape velocity) for very massive galaxies) SFR vs Wind Mass: SFR of galaxies in the sample: 10 - 100 Mo/yr (~ LIRG) roughly matches mass outflow of ~ 20 Mo/yr as estimated from speed, column density, and size of < wind >

Implications of z ~ 1.4 MgII Results for models of Galaxy Formation and Galactic Winds

HST Images: only 3/118 had merger-like morphologies; so mergers are not required for strong winds, as might be inferred from studies of ULIRGS and post-starbursts studied by others ;

Outflow Velocities: scaling relationships: higher for larger stellar mass, higher for higher SFR, with V(wind) ~ SFR ^{0.3} as found for local ULIRG (Martin 05) ; higher than escape velocity imply massive galaxies, not dwarfs, *may* dominate wind activity and enrichment of IGM at high redshifts

TKRS Study at z ~ 0.7 - 1 see Rubin+10 for more details

Kate Rubin TKRS (Team Keck Redshift Survey) of GOODS-North: (MPIA) Compared to Weiner et al. 2009, TKRS spectra reached bluer limits and thus accessed lower redshifts (& lower mass galaxies) for the UV lines of MgII, FeII; OII emission was still used for the zero velocity reference for flow velocity;

Sample Selection: MgII/FeII must be visible with sky spectra indicating reliable wavelength and continuum (468 galaxies);

CFHT Images: provide luminosities and U-B colors Palomar K Images: provide stellar masses HST Images: galaxy sizes to derive SFR surface density; galaxy morphology (Gini,M20)

Spitzer MIPS Fluxes: determine IR luminosity (LIRG, ULIRG)

TKRS Study at z ~ 0.7 - 1

see Rubin+10 for more details

Kate Rubin TKRS (Team Keck Redshift Survey) of GOODS-North: (MPIA) Compared to Weiner et al. 2009, TKRS spectra reached bluer limits and thus accessed lower redshifts (& lower mass galaxies) for the UV lines of MgII, FeII; OII emission was still used for the zero velocity reference for flow velocity;

Sample Selection: MgII/FeII must be visible with sky spectra indicating reliable wavelength and continuum (#468);

CFHT Images: provide luminosities and U-B colors Palomar K Images: provide stellar masses HST Images: galaxy sizes to derive SFR surface density; galaxy morphology (Gini,M20)

Spitzer MIPS Fluxes: determine IR luminosity (LIRG, LILIRG)

Results from TKRS at z ~ 1 & IMPLICATIONS for Galaxy Formation Models

W.M. KECK DESERVATOR

Massive galaxies with high (but lower) SFR continue to have winds from $z \sim 1.4$ to $z \sim 1$. SFR, not SSFR, is key driver.

Mass outflows continue to be roughly the same as the SFR.

Keck LRIS Spectra: 2h-3h exposures of 3200A – 8000A; Resolution ~ 200-400 km/s provide UV Absorption strength and line profiles for detection of gas flow;

Sample Selection: GOODS-N&S & EGS with prior DEIMOS spectra: Redshifts 0.3 < z < 1.4 & bright (B<23) (150 galaxies); Based on analysis of 1 or 2 component flow model fits to FeII and MgII lines (abs & em) of individual galaxies, 2/3 had outflows, and 6 seen with clear inflow

Prior Optical photometry: luminosities (L_B) and colors (U-B)**HST ACS:** color images, morphologies, and inclinations

Rubin+12b (in prep)

see also Bordoloi+11,Kacprzak+11,Kornei+12

VOILA ! DETECTION of OUTFLOWS/WINDS depends STRONLY on INCLINATION

5) Summary

6 of the 150 Galaxies show INFLOWS

Why so rare? Maybe not! Winds easily hide inflows

DRY

Jeep

Implications

"First" solid detections of inflowing, cool *metal-rich* gas among individual galaxies at intermediate redshifts

Amount of inflow is small compared to the SFR: (0.2 – 0.6 Mo/yr vs SFR of galaxies (1-40 Mo/yr):

5/6 (3%-4% of total) have high inclinations (dusty?): If absorption lines of inclined galaxies are less confused with absorption due to strong bipolar/disk outflows; → 40% of 150 show similar level of redshifted absorption
Origin of the inflow is unclear – Possibilities: inflow from IGM (but too metal rich) – mixed?; part of accreting satellites (why inclined galx?) recycled winds circulating in a galactic fountain

5) Summary

Using galaxies instead of QSOs as background sources, we are entering a new era of powerful spectral & multiwavelength surveys to study distant galaxy gas flows, both into and out of the galaxy.

B. Weiner+09:

finds that almost all luminous blue galaxies at z ~1.4 have winds of 100's km/s with speeds correlated with mass and SFR as found locally; the high fractions of galaxies with outflows imply winds are *not* sufficient to quench subsequent SF (need AGN?)

K. Rubin+10:

finds that massive, high SFR, lower z ~ 1 galaxies continue to have outflows (~ SFR). Less massive galaxies with higher SSFR do not.

~All massive galaxies with high SFR have winds at $z \sim 1$

K. Rubin+12a & b:

finds 2/3 show outflows; inclination dependence with bipolar winds->

~All massive galaxies with high SFR have winds at z ~ 0.5
6 of 150 galaxies are dominated by inflows; 5/6 are edge-on.
source of inflow TBD: IGM, satellite, galactic fountain are still viable

OUTFLOW GALACTIC WINDS are UBIQUITOUS from z~0.5 to 1.4 among STAR-FORMING GALAXIES

INFLOWS appear RARE (few %) but due to BI-POLAR WINDS, and accounting for INCLINATION, may actually be common (40%)