Thermal-Instability-Driven Turbulent Mixing in Galactic Disks

Chao-Chin Yang and Mark Krumholz
University of California, Santa Cruz
Radial Metallicity Gradient

Nearby Disk Galaxies

Bresolin, Kennicutt, & Ryan-Weber 2012
Radial Metallicity Gradient

26 MASSIV Galaxies at $z \sim 1.2$

Queyrel et al. 2012
What Sets Radial Metallicity Gradients?
What Sets Radial Metallicity Gradients?

- **Star formation law and history** (e.g., Phillipps & Edmunds 1991)
What Sets Radial Metallicity Gradients?

• **Star formation law and history** (e.g., Phillipps & Edmunds 1991)

• **Supernova-driven galactic fountains** (Spitoni, Recchi, & Matteucci 2008; Spitoni et al. 2009)

• **Gas radial inflows within the disk** (Mayor & Vigroux 1981; Lacey & Fall 1985; Pitts & Tayler 1989; Götzt & Köppen 1992; Portinari & Chiosi 2000; Spitoni & Matteucci 2011; Bilitewski & Schönrich 2012)

• **Merger/interaction history** (Perez et al. 2006, 2011; Kewley et al. 2010; Rupke, Kewley, & Barnes 2010; Rupke, Kewley, & Chien 2010; Torrey et al., in prep.)

• **Stellar radial migration** (Roškar et al. 2008a,b; Schönrich & Binney 2009)
What Sets Radial Metallicity Gradients?

- **Star formation law and history** (e.g., Phillipps & Edmunds 1991)

- **Supernova-driven galactic fountains** (Spitoni, Recchi, & Matteucci 2008; Spitoni et al. 2009)

- **Gas radial inflows within the disk** (Mayor & Vigroux 1981; Lacey & Fall 1985; Pitts & Tayler 1989; G"otz & K"oppen 1992; Portinari & Chiosi 2000; Spitoni & Matteucci 2011; Bilitewski & Sch"onrich 2012)

- **Merger/interaction history** (Perez et al. 2006, 2011; Kewley et al. 2010; Rupke, Kewley, & Barnes 2010; Rupke, Kewley, & Chien 2010; Torrey et al., in prep.)

- **Stellar radial migration** (Roškar et al. 2008a,b; Schönrich & Binney 2009)

- **Turbulent mixing (?)**
Driving Turbulence in the Interstellar Medium

- Supernova explosions
- Rayleigh-Taylor instability
- Gravitational instability
- Magneto-rotational instability
- Thermal instability
Two-phase Model for the ISM

Heating rate $\sim n \Gamma(T)$

Cooling rate $\sim n^2 \Lambda(T)$
Two-phase Model for the ISM

- **Cooling Dominated**
- **Heating Dominated**

- **Warm Neutral Medium**
- **Cold Neutral Medium**

\[
\begin{align*}
\text{Cooling rate} & \sim n \Gamma(T) \\
\text{Heating rate} & \sim n^2 \Lambda(T)
\end{align*}
\]
Setup
Setup

- Thin gas disk (2D)
Setup

- Thin gas disk (2D)
- Local shearing sheet
- Goldreich & Lynden-Bell (1965)

\[L_y = 2L_x \]

\[L_x = \pi R_0 \sin \iota \]

Kim & Ostriker (2002)
Setup

- Thin gas disk (2D)
- Local shearing sheet
- Goldreich & Lynden-Bell (1965)
- Background stellar spiral forcing

Kim & Ostriker (2002)
Setup

- Thin gas disk (2D)
- Local shearing sheet
- Goldreich & Lynden-Bell (1965)
- Background stellar spiral forcing
- Heating and cooling

Kim & Ostriker (2002)
Setup

- Thin gas disk (2D)
- Local shearing sheet
 - Goldreich & Lynden-Bell (1965)
- Background stellar spiral forcing
- Heating and cooling
 - Koyama & Inutsuka (2002)

Kim & Ostriker (2002)
Setup

- Thin gas disk (2D)
- Local shearing sheet
- Goldreich & Lynden-Bell (1965)
- Background stellar spiral forcing
- Heating and cooling
 - Koyama & Inutsuka (2002)
- Thermal instability \Rightarrow Two phases: cold and warm neutrals
Setup

- Thin gas disk (2D)
- Local shearing sheet
- Goldreich & Lynden-Bell (1965)
- Background stellar spiral forcing
- Heating and cooling
- Koyama & Inutsuka (2002)
- Thermal instability \Rightarrow Two phases: cold and warm neutrals
- Magnetic fields
Setup

- Thin gas disk (2D)
- Local shearing sheet
- Goldreich & Lynden-Bell (1965)
- Background stellar spiral forcing
- Heating and cooling
- Koyama & Inutsuka (2002)
- Thermal instability \(\Rightarrow \) Two phases: cold and warm neutals
- Magnetic fields
- Metals as passive scalar fields
Setup

- Thin gas disk (2D)
- Local shearing sheet
- Goldreich & Lynden-Bell (1965)
- Background stellar spiral forcing
- Heating and cooling
- Koyama & Inutsuka (2002)
- Thermal instability ⇒ Two phases: cold and warm neutrals
- Magnetic fields
- Metals as passive scalar fields
Turbulent Steady State

Spiral Forcing Magnetic Fields

Surface Density

Isothermal Thermally Unstable

3 kpc
Turbulent Steady State

Spiral Forcing

Magnetic Fields

Metal Tracer Field

Isothermal

Thermally Unstable

Metal Injection Layer
Turbulent Steady State

Spiral Forcing

Magnetic Fields

Surface Density

Isothermal

Thermally Unstable
Turbulent Steady State

Spiral Forcing Magnetic Fields

Metal Tracer Field

 Isothermal Thermally Unstable
Turbulent Steady State

- Isothermal
- Thermally Unstable
- Spiral Forcing
- Magnetic Fields
- Surface Density

Isothermal

Thermally Unstable
Turbulent Steady State

Spiral Forcing Magnetic Fields

Metal Tracer Field

Isothermal

Thermally Unstable
Power Spectrum of Mixed Metals

Normalized Power Density

Thermal Instability
+Spiral Forcing
+Magnetic Fields

$2\pi R_0 k$
Following the Flow

Metal Tracer Field

Power in k_y

Space

e_ϕ

Time
Following the Flow

Metal Tracer Field

Power in k_y

Space

Time

Thursday, August 16, 12
Conclusions

Turbulent mixing of metals is...

• efficient (timescale < orbital time).

• not the same as the viscous stress of the gas.

• important in setting metallicity gradients.