TOWARD THE FORMATION OF REALISTIC SATELLITE GALAXIES

ALYSON BROOKS GRAINGER POSTDOCTORAL FELLOW

IN COLLABORATION WITH C. CHRISTENSEN, F. GOVERNATO, A. PONTZEN, T. QUINN, S. SLOEBMAN, J. WADSLEY, B. WILLMAN, A. ZOLOTOV

HOW DOES THE MODEL COMPARE TO DATA?

PREDICTED SATELLITES ARE STILL TOO DENSE... UNLESS THERE'S A DISK!

Boylan-Kolchin et al. (2012); Brooks & Zolotov (2012)

CORRECTIONS TO DM-ONLY DATA

Zolotov et al. (2012); Brooks & Zolotov (2012)

ALL SATELLITES HAVE REDUCED CENTRAL MASSES

All satellites in our sample have central DM-only masses 2-4x larger than SPH

Corrections account for:

- baryon loss
- tidal presence of the disk
- core creation in satellites brighter than $M_v = -12$

WHAT ABOUT THE NUMBER OF LUMINOUS SATELLITES?

1000's of satellites predicted

dozens seen

"Via Lactea"

WHAT ABOUT THE NUMBER OF LUMINOUS SATELLITES?

Apply the model to VL2:

VL2 has 28 subhalos with $v_{max} > 20 \text{ km/s}$

courtesy M. Kuhlen

WHAT ABOUT THE NUMBER OF LUMINOUS SATELLITES?

Apply the model to VL2:

VL2 has 28 subhalos with $v_{max} > 20 \text{ km/s}$

After correction: 6 subhaloswith $v_{max} > 20 \text{ km/s}$

SO THE NUMBER OF MASSIVE SATELLITES IS REDUCED...

BUT WHAT ABOUT LUMINOUS SATELLITES?

Assume v_{peak} -- M_{star} relation

and destruction

Zolotov et al. (2012); Penarrubia et al. (2010)

SO THE NUMBER OF MASSIVE SATELLITES IS REDUCED...

BUT WHAT ABOUT LUMINOUS SATELLITES?

Adopt mass loss associated with destruction

Zolotov et al. (2012)

- Bulge-less disk galaxies
- The cusp/core problem
- The dense satellites problem
- The "Missing Satellites" problem

SUPERNOVAE REMOVE LOW ANGULAR MOMENTUM GAS

producing smaller bulges and bulgeless disk galaxies

Governato et al. (2010)

- Bulge-less disk galaxies
- The cusp/core problem
- The dense satellites problem
- The "Missing Satellites" problem

CUSPS TRANSFORM INTO CORES

Repeated bursts of star formation flatten the central density slope

- Bulge-less disk galaxies
- The cusp/core problem ✓
- The dense satellites problem
- The "Missing Satellites" problem

SATELLITES THAT ARE TOO DENSE

Boylan-Kolchin et al. (2012); Brooks & Zolotov (2012)

- Bulge-less disk galaxies
- The cusp/core problem ✓
- The dense satellites problem \checkmark
- The "Missing Satellites" problem

- Bulge-less disk galaxies 🗸
- The cusp/core problem ✓
- The dense satellites problem \checkmark
- The "Missing Satellites" problem maybe

CONCLUSIONS

- Baryonic physics is a viable solution to creating a realistic satellite population
- End the small scale crisis! We must first understand the impact of baryons on dark matter to understand galaxy evolution in CDM
- ...But that means we have to first understand star formation