Toward the formation of realistic Satellite Galaxies

Alyson Brooks
Grainger Postdoctoral Fellow

in collaboration with C. Christensen, F. Governato, A. Pontzen, T. Quinn, S. Sloebman, J. Wadsley, B. Willman, A. Zolotov
But...

How Does the Model Compare to Data?

- satellites show no trend across luminosity
- scatter fainter than $M_v=-12$ due to stripping after infall
- brighter than $M_v=-12$ have cores, even more stripping

Brooks & Zolotov (2012)
Predicted Satellites are still too Dense... unless there’s a disk!

Boylan-Kolchin et al. (2012); Brooks & Zolotov (2012)
Corrections to DM-only DATA

Theory space:

Observer space:

\[\Delta(v_c, 1\text{kpc}) = 0.2v_{\text{peak, DM-only}} - 0.26 \]

\[\Delta(v_c, 1\text{kpc}) = -10.47 - 1.35 \times M_V \]

Zolotov et al. (2012); Brooks & Zolotov (2012)
ALL Satellites have Reduced Central masses

All satellites in our sample have central DM-only masses 2-4x larger than SPH.

Corrections account for:

- baryon loss
- tidal presence of the disk
- core creation in satellites brighter than $M_V = -12$
But...

What About the Number of Luminous Satellites?

1000’s of satellites predicted
dozens seen

“Via Lactea”
But... What About the Number of Luminous Satellites?

Apply the model to VL2: VL2 has 28 subhalos with $v_{\text{max}} > 20$ km/s

courtesy M. Kuhlen
But...

What About the Number of Luminous Satellites?

Apply the model to VL2:

VL2 has 28 subhalos with $v_{\text{max}} > 20$ km/s

After correction: 6 subhalos with $v_{\text{max}} > 20$ km/s
So the number of massive satellites is reduced... but what about luminous satellites?

Assume $v_{\text{peak}} \propto M_{\text{star}}$ relation

and destruction

Zolotov et al. (2012); Penarrubia et al. (2010)
So the Number of Massive Satellites is Reduced... but what about Luminous Satellites?

Adopt mass loss associated with destruction

Zolotov et al. (2012)
the Bigger Picture:
The Small Scale “Crisis” of CDM

- Bulge-less disk galaxies
- The cusp/core problem
- The dense satellites problem
- The “Missing Satellites” problem
Supernovae Remove Low Angular Momentum Gas

producing smaller bulges and bulgeless disk galaxies

Governato et al. (2010)
the Bigger Picture:
The Small Scale “Crisis” of CDM

• Bulge-less disk galaxies ✓
• The cusp/core problem
• The dense satellites problem
• The “Missing Satellites” problem
Cusps Transform into Cores

Repeated bursts of star formation flatten the central density slope
The Bigger Picture:
The Small Scale “Crisis” of CDM

- Bulge-less disk galaxies
- The cusp/core problem
- The dense satellites problem
- The “Missing Satellites” problem
Satellites that are not Too Dense

Boylan-Kolchin et al. (2012); Brooks & Zolotov (2012)
The Bigger Picture: The Small Scale “Crisis” of CDM

- Bulge-less disk galaxies ✓
- The cusp/core problem ✓
- The dense satellites problem ✓
- The “Missing Satellites” problem
the Bigger Picture:
The Small Scale “Crisis” of CDM

- Bulge-less disk galaxies ✓
- The cusp/core problem ✓
- The dense satellites problem ✓
- The “Missing Satellites” problem maybe
Conclusions

• Baryonic physics is a viable solution to creating a realistic satellite population

• End the small scale crisis! We must first understand the impact of baryons on dark matter to understand galaxy evolution in CDM

• ...But that means we have to first understand star formation