Redistributing matter in Dwarf Galaxies: Cusps and Cores

James Wadsley Aaron Maxwell Sergey Mashchenko Hugh Couchman

Santa Cruz Galaxy Workshop 2012

ACDM Cosmology Success Story All's well at larger scales ...

Where Baryons are important: Problems for ΛCDM?

- Missing Satellites Dark satellites vs. observed satellites: Not a problem
 See talks in this session, work by Zolotov, Brooks, etc ...
- Too Many Baryons Simulated Galaxies keep gas and eventually make too many stars Yet stronger feedback: See work by Stinson, Brook, Trujillo-Gomez, Aquila Comparison
- Dark Matter Profiles Observed dwarf Galaxies vs. cuspy dark matter profiles

Aquila Comparison Project

DM+Gas+Star Formation Simulations of a MW analogue halo

Limitations: Same ACDM initial conditions but otherwise choose your favourite model

Scannapieco, Wadepuhl, Parry, Navarro ... Wadsley ... et al. 2012

Groups/Codes

Table 1. Sun	umary of code	characteristics	and	sub-grid	physics
--------------	---------------	-----------------	----------------------	----------	---------

	Code	Reference	Туре	UV b $(z_{\rm UV})$	ackground (spectrum)	Cooling	Feedback
	G3 (gadget3)	[1]	SPH	6	[10]	primordial [13]	SN (thermal)
GIVE UP ON THAT SISSY LIGHTER FLUID.	G3-BH	[1]	SPH	6	[10]	primordial [13]	SN (thermal), BH
	G3-CR	[1]	SPH	6	[10]	primordial [13]	SN (thermal), BH, CR
	G3-CS	[2]	SPH	6	[10]	metal-dependent [14]	SN (thermal)
	G3-TO	[3]	SPH	9	[11]	element-by-element [15]	SN (thermal+kinetic)
	G3-GIMIC	[4]	SPH	9	[11]	element-by-element [15]	SN (kinetic)
	G3-MM	[5]	SPH	6	[10]	primordial [13]	SN (thermal)
	G3-CK	[6]	SPH	6	[10]	metal-dependent [14]	SN (thermal)
	GAS (gasoline)	[7]	SPH	10	[12]	metal-dependent [16]	SN (thermal)
	R (ramses)	[8]	AMR	12	[10]	metal-dependent [14]	SN (thermal)
	R-LSFE	[8]	AMR	12	[10]	metal-dependent [14]	SN (thermal)
	R-AGN	[8]	AMR	12	[10]	metal-dependent [14]	SN (thermal), BH
	AREPO	[9]	Moving Mesh	6	[10]	primordial [13]	SN (thermal)
1 (2 Dul	NOTE: [1] Springel et a 009); [5] Murante et pois & Teyssier (2008 vate communication)	al. (2008); [2] al. (2010); [6]); [9] Springel ; [13] Katz et	Scannapieco et a Kobayashi et al (2010a); [10] Ha al (1996): [14] K	al, (2005) (2007); ardt & N Sutherlan	; Scannapieco [7] Stinson et ; [adau (1996); [.d.& Dopita (1)	et al. (2006); [3] Okamoto (al. (2006); [8] Teyssier (200 [11] Haardt & Madau (2001 993); [15] Wiersma et al. (2	et al. (2010); [4] Crain et al. 2); Rasera & Teyssier (2006); 1); [12] Haardt & Madau (2005, 2009a): [16] Shen et al. (2010)

Results

6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00 10.50

Figure: Stellar Mass Density at redshift z=0

- Spheroidal → Spiral
- Stellar Mass variation: 1 order of magnitude

General Outcome

- Too many stars (cf. Guo et al. 2010)
- Most star formation z > 3-4
- Too small, too rapidly rotating
- Primary solution: blow out the gas by hand

General Outcome

- Too many stars (cf. Guo et al. 2010)
- Most star formation z > 3-4
- Too small, too rapidly rotating
- Primary solution: blow out the gas by hand

Alternate Solutions: Early Stellar Feedback Models

Models mimic Stellar Winds, UV, Radiation Pressure , SN – Lots of parameters -- getting like Semi-Analytic Models Losing predictive power?

Avoiding Parameter Creep

- Ideally no imposed SF threshold: Just make the stars from H₂ (c.f. Gnedin)
- Gasoline implementation (Christensen et al. 2012)

Aquila Comparison and The State of Galaxy Formation

- Large code-to-code variation
- Sub-grid SF/Feedback models NOT mature, particularly for processes affecting larger galaxies
- Back-to-basics:

Sub-grid models are unavoidable, we need to constrain them by understanding star formation on kpc scales and smaller

Structure of Dwarf Galaxies

Navarro, Frenk & White (1997) "Universal Dark Matter Profile" with central density cusp doesn't match small galaxies

FIG. 2.—Mass models for DDO 47; the solid line is the best-fitting model with the Burkert halo, and the dashed line represents the best-fitting NFW model, with a virial mass $M_{\rm vir} = 2.4 \times 10^{10} M_{\odot}$ (see text).

Gentile, Burkert, et al. 2005

FIG. 1.—Velocity field of DDO 47 (contours) from the 15 " resolution cube and its total H 1 map (gray scale). Contours are spaced by 10 km s⁻¹.

Cusp/Core problem in ΛCDM

Walker & Peñarrubia (2011): Fornax, Sculptor $\Delta \log M / \Delta \log r \sim 2.61, 2.95$ rule out NFW (cusp) at >~ 96%, 99%

Proposed solutions

- New physics: WDM; self-interacting DM; MOND
- Solutions within standard ACDM require DM "heating", e.g.:
 - Rotating bar
 - Passive evolution of cold lumps (e.g., El Zant et al. 2001)
 - Recoiling black holes
 - AGN
 - "Maximal stellar feedback"/"blowout" (Read & Gilmore 2005, Navarro et al 1996)

A mechanism that is a natural consequence of structure formation:

- Bulk gas motions driven by supernovae and stellar winds cause potential fluctuations that "pump" the orbits of the collisionless components (Mashhchenko, Couchman & Wadsley 2006, Mashchenko, Wadsley & Couchman 2008, Pontzen & Governato 2012)
 - Must have been commonplace in early, gas-rich dwarfs
 - Observe bulk motions of cold gas in present-day dwarfs that are mildly supersonic, have scale ~ few 100pc and velocities ~10 km/s (similar to dark matter)

Fornax-like Dwarf galaxy simulation

Constrained cosmological simulation

Evolution of isolated dwarf galaxy (~ $10^9 M_{\odot}$) over z=10...5.

15 million particles (10 million hi-res).

$$m_{\rm DM} = 1900 M_{\odot}$$
$$m_{\rm gas} = 370 M_{\odot}$$
$$m_{\rm star} = 120 M_{\odot}$$

 $\varepsilon = 12 pc$

1.1 10^{7} dark 4.5 10^{6} gas 4.5 10^{5} star

Improved modelling of ISM

Need low temperature cooling and a high density threshold for "clustered star formation". Model supernovae as point explosions. Cosmological simulation with gas dynamics, clustered star formation and stellar feedback.

Central 1.3 kpc of a forming dwarf galaxy.

z = 9...5

Gas is in blue, stars are in yellow

Episodic, clustered star formation

Maxwell, Wadsley, Couchman & Mashchenko (2012)

Star formation and feedback close up

Maxwell, Wadsley, Couchman & Mashchenko (2012)

Maxwell, Wadsley, Couchman & Mashchenko (2012)

Maxwell, Wadsley, Couchman & Mashchenko (2012)

Maxwell, Wadsley, Couchman & Mashchenko (2012)

Radial profiles

Mashchenko et al., Science 2008 (Governato et al 2010; Pontzen & Governato 2011)

Energy costs to form a core

- Blowout is less effective and energetically more expensive than Orbit pumping
- Even with orbit pumping: Does forming cores require too many SN in dwarf galaxies?

Peñarrubia, Pontzen, Walker & Koposov (2012) Estimate that small galaxy star formation rates inconsistent with energy requirements to form a core

Energy costs to form a core

Peñarrubia et al. assumed large smooth cores (1-5 kpc) and redistribute mass out to virial radius

5 kpc core (red) may fit slope but does not fit enclosed mass! (data from Walker & Penarrubia 2011) Simulations – core is smaller, very flat and distributes mass to roughly twice core radius (black to green line)

2.5

log r (pc)

2

3

Density

-1

-2

 $^{-3}$

1.5

log p (M_opc⁻³)

0.5

5

-0.5

3.5

Energy costs to form a core

Peñarrubia et al estimate – move matter to virial radius

Estimate moving matter to 2 x core radius Wadsley et al, in prep

• Energetics of core formation <u>are</u> consistent with satellite SFR (e.g. Kosopov et al 2009)

Orbit pumping of the stellar component

Orbits of "Globular Clusters"

Long-lived star clusters

Distance from galactic centre:

- At birth (z~6.2): $\sigma_r = 37 \text{ pc}$
- After 200 Myr: σ_r = 280 pc

Stellar feedback also acts on GCs, and
Impact of dynamical friction reduced by flat core (e.g., Fornax)

Clusters formed near centre, "kicked" out to large radii

Conclusions:

Implications of Orbit pumping for Stars

- Leads to a decreasing gradient of stellar metallicity with radius; redistribution stops when vigorous star formation stops
- Central stellar density roughly constant as migrating stars replenished
- "Globular clusters" form in ISM (no DM) and migrate outwards over several orbits; may form multiple generations (c.f. D'Ercole et al. 2010) from enriched gas in nucleus (lose access to this gas as orbits grow)
- GCs protected from tidal disruption as orbits grow and cusp erased
- Mergers and tidal stripping will deposit the GCs and loosely bound stars into haloes of later generations of larger galaxies; could be source of current GCs in all galaxies

Dwarf Galaxy (DG1)

Simulation (Governato .. JW et al. 2010)

- ~ $10^9 M_{SUN}$ Halo
- ~80 pc resolution, mass resolution $< 10^4 M_{SUN}$
- "Zoomed" Cosmological IC: 50 Mpc box

