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Dark Sub-Halos:  Expectations from Simulations

•Massive satellites too dense to host known MW satellites (Boylan-
Kolchin et al. 2011) 



Tidal Imprints of dark-matter dominated dwarf 
galaxies on outskirts of Spirals

• Coldest Component 
Responds the Most! (by 
ratio of inverse sound speed 
squared).  Gas has short-
term memory.

• Maximize rate of detection 
of dim dwarf galaxies by 
looking for their tidal 
footprints on atomic 
hydrogen gas disks.

Atomic 
hydrogen 
(HI) Maps!

Footprints 
of Dark 

Sub-Halos



Disturbances in HI disks in Local 
Spirals:  Proof of Principle 
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M51 Simulation Comparison

Chakrabarti, Bigiel, 
Chang & Blitz, 2011

3-D 
stereoscopic 
rendering 
shown at 
AAS 2011



Variance Vs Variance

Best-fits -- close to origin on
variance vs variance plot (S1-S1-4), shown 
at best-fit time.  “Variants” include 
varying initial conditions (ICs), interstellar 
medium (ISM), star formation 
prescription, orbital inclination, etc. Our 
estimate of Ms (1:3) close to 
observational numbers.
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Koribalski & Sanchez 09) (global fourier amplitudes)
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A Simplified Approach Test Particles

Mode Reconstruction

Fitting relations for satellite mass 
from Fourier amplitudes

Chang & Chakrabarti 2011



Inferring the distribution of DM 
in galaxies

• Rotation curves -- infer the existence of dark matter 
halos in galaxies

• but how is it distributed?  Theoretical N-body 
simulations find it should be (NFW):                                   
ρ(r)=δcρc/[(r/Rs)(1+(r/Rs)2] (ρ ∝ r-1 for r < Rs and     
∝ r-3 for r > Rs)



how can we get the scale radius?

• build on previous results for M51.  Use derived 
satellite mass and Rperi.  Varying the density profile 
varies the potential depth and the resultant 
disturbances

Rs=32 kpc Rs=17 kpc Rs=11 kpc



Inferring the scale radius of the 
dark matter halo

• Three distinct regimes:  for r < Rs, dΦ/dr < 0, for 
r > Rs, dΦ/dr > 0, and for r ~ Rs, dΦ/dr 
transitions (Chakrabarti 2012, arXiv:1112.1416)



Inferring the scale radius

• if Rs is held constant, then different 
concentration values give nearly identical 
results for r/Rs > 1



Inferring the scale radius contd

• phase does depend on other parameters (ICs: bulge 
fraction, gas fraction, orbital inclination), but the 
dependence is not very large (Chakrabarti 2012)



Will halo shapes affect our analysis?

• In general, yes.  But disturbances in tidally interacting 
systems like M51 are dominated by the companion, 
not intrinsic processes.

• Cosmological sims (Maccio 
et al. 2008): DM halos are 
non-spherical ... but including 
a baryonic stellar disk makes 
halos rounder (Debattista et 
al. 2008).  Including gas 
cooling in such sims 
(Debattista et al., in prep; 
Chakrabarti et al. in prep)
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Halo shapes contd.

Fourier amplitudes of 
planar disturbances 

low in outskirts (less 
than 10 %) close to 

present day, but warp 
survives in some 

simulations (where 
gas and halo angular 

momenta are 
misaligned)
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Future Work

• Focus on low-order modes means that 
we study the larger scale disturbances

• Current & future work:  effects of even 
smaller (< 1:1000) perturbers, and 
multiple perturbers on the higher order 
modes.  M83 - multiple satellite model 
(Chakrabarti et al., in prep).  Scaling 
relations for multiple satellites

• Lensing - Tidal Analysis comparison for 
cosmological hydrodynamical 
simulations



z

N

z=0.8 
c) sub-structure, 

r < rE: strong lensing

b) Local  volume 
Tidal Analysis

N =1

a) z~0.1, N~ 104

profiles in outskirts: 
weak lensing 

(Mandelbaum et al. 06)

N~104

Vegetti et al. 2012



Summary & Future
• Analysis of perturbations in cold gas on outskirts of 

galaxies:  constrains mass,R,and azimuth of dark (or 
luminous) perturbers.  New method to characterize 
satellites (to see dark galaxies).   Method tested for 
satellites with mass ratio: ~1:100 - 1:3.  Extended to 
infer dark matter density profile of spirals.

• Extending to include multiple satellites and 
non-spherical halos

• comparison to lensing
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Coming Soon!

AAS topical conference series (TCS) meeting on: 
“Probes of Dark Matter on Galaxy Scales” 

July 2013

SOC: SC, Leo Blitz, Lars Hernquist, Manoj Kaplinghat, Chris 
Fassnacht, Rachel Mandelbaum, Jay Gallagher, Martin Weinberg


