A New Probe of Dark Matter in Spirals

Sukanya Chakrabarti (FAU); Leo Blitz (UCB); Phil Chang (University of Wisconsin-Milwaukee); Frank Bigiel (Heidelberg)

Cold gas as tracer of perturbing dark-matter dominated dwarf galaxies

• Galaxies with optical companions : Proof of Principle

Cold gas as tracer of perturbing dark-matter dominated dwarf galaxies

• Galaxies with optical companions : Proof of Principle

 Cold gas as tracer of perturbing dark-matter dominated dwarf galaxies
M83 +UGCA365 HI distribution (9-point mosaic)

• Galaxies with optical companions : Proof of Principle

 Cold gas as tracer of perturbing dark-matter dominated dwarf galaxies
M83 +UGCA365 HI distribution (9-point mosaic)

- Galaxies with optical companions : Proof of Principle
- Inferring distribution of dark matter in galaxies

• Missing satellites problem (Klypin et al. 1999; Diemand et al. 2008)

Figure 2. Subhalos from all six Aquarius simulations (circles) and Via Lactea II (triangles), color-coded according to V_{infall} . The shaded blue region shows the 2σ confidence interval for possible hosts of the bright MW dwarf spheroidals (see Fig. 1).

Massive satellites too dense to host known MW satellites (Boylan-Kolchin et al. 2011)

Tidal Imprints of dark-matter dominated dwarf galaxies on outskirts of Spirals

- Coldest Component Responds the Most! (by ratio of inverse sound speed squared). Gas has shortterm memory.
- Maximize rate of detection of dim dwarf galaxies by looking for their tidal footprints on atomic hydrogen gas disks.

Footprints of Dark Sub-Halos

Disturbances in HI disks in Local Spirals: Proof of Principle

optical image

 $a_m(r) = \int \Sigma(r, \varphi) e^{-im\varphi} d\varphi$ Local Fourier Amplitudes of HI data: Metric of Comparison to simulations

optical image

 $a_m(r) = \int \Sigma(r, \phi) e^{-im\phi} d\phi$ Local Fourier Amplitudes of HI data: Metric of Comparison to simulations

optical image

 $a_m(r) = \int \Sigma(r, \varphi) e^{-im\varphi} d\varphi$ Local Fourier Amplitudes of HI data: Metric of Comparison to simulations

M51 Simulation Comparison

Chakrabarti, Bigiel, Chang & Blitz, 2011

0.00

3-D stereoscopic rendering shown at AAS 2011

Variance Vs Variance

Best-fits -- close to origin on variance vs variance plot (S_1-S_{1-4}) , shown at best-fit time. "Variants" include varying initial conditions (ICs), interstellar medium (ISM), star formation prescription, orbital inclination, etc. Our estimate of M_s (1:3) close to observational numbers.

Variance Vs Variance

Best-fits -- close to origin on variance vs variance plot (S_1-S_{1-4}) , shown at best-fit time. "Variants" include varying initial conditions (ICs), interstellar medium (ISM), star formation prescription, orbital inclination, etc. Our estimate of M_s (1:3) close to observational numbers.

Best-fits -- close to origin on variance vs variance plot (S_1-S_{1-4}) , shown at best-fit time. "Variants" include varying initial conditions (ICs), interstellar medium (ISM), star formation prescription, orbital inclination, etc. Our estimate of M_s (1:3) close to observational numbers.

Galaxies with known optical companions contd.

 ~I:100 satellite, R_{peri} = 7kpc (close agreement with Koribalski & Sanchez 09) (global fourier amplitudes)

Method works for 1:3 - 1:100 mass ratio satellites

Galaxies with known optical companions contd.

- ~I:100 satellite, R_{peri} = 7kpc (close agreement with Koribalski & Sanchez 09) (global fourier amplitudes)
- Method works for 1:3 1:100 mass ratio satellites

Test Particles

A Simplified Approach

Mode Reconstruction

Fitting relations for satellite mass from Fourier amplitudes Chang & Chakrabarti 2011

Inferring the distribution of DM in galaxies

- Rotation curves -- infer the existence of dark matter halos in galaxies
- but how is it distributed? Theoretical N-body simulations find it should be (NFW): $\rho(r) = \delta_c \rho_c / [(r/R_s)(1+(r/R_s)^2] (\rho \propto r^{-1} \text{ for } r < R_s \text{ and} \propto r^{-3} \text{ for } r > R_s)$

how can we get the scale radius?

- $R_s=32 \text{ kpc} \qquad R_s=17 \text{ kpc} \qquad R_s=11 \text{ kpc}$
- build on previous results for M51. Use derived satellite mass and R_{peri}. Varying the density profile varies the potential depth and the resultant disturbances

Inferring the scale radius of the dark matter halo

 Three distinct regimes: for r < R_s, dΦ/dr < 0, for r > R_s, dΦ/dr > 0, and for r ~ R_s, dΦ/dr transitions (Chakrabarti 2012, arXiv:1112.1416)

Inferring the scale radius

 if R_s is held constant, then different concentration values give nearly identical results for r/R_s > 1

Inferring the scale radius contd

 phase does depend on other parameters (ICs: bulge fraction, gas fraction, orbital inclination), but the dependence is not very large (Chakrabarti 2012)

Will halo shapes affect our analysis?

- In general, yes. But disturbances in tidally interacting systems like M51 are dominated by the companion, not intrinsic processes.
- Cosmological sims (Maccio) et al. 2008): DM halos are non-spherical ... but including a baryonic stellar disk makes halos rounder (Debattista et al. 2008). Including gas cooling in such sims (Debattista et al., in prep; Chakrabarti et al. in prep)

Will halo shapes affect our analysis?

- In general, yes. But disturbances in tidally interacting systems like M51 are dominated by the companion, not intrinsic processes.
- Cosmological sims (Maccio et al. 2008): DM halos are non-spherical ... but including a baryonic stellar disk makes halos rounder (Debattista et al. 2008). Including gas cooling in such sims (Debattista et al., in prep; Chakrabarti et al. in prep)

Future Work

- Focus on low-order modes means that we study the larger scale disturbances
- Current & future work: effects of even smaller (< 1:1000) perturbers, and multiple perturbers on the higher order modes. M83 - multiple satellite model (Chakrabarti et al., in prep). Scaling relations for multiple satellites
- Lensing Tidal Analysis comparison for cosmological hydrodynamical simulations

Ζ

b) Local volume Tidal Analysis z=0.8 c) sub-structure, r < r_E: strong lensing

Summary & Future

- Analysis of perturbations in cold gas on outskirts of galaxies: constrains mass,R,and azimuth of dark (or luminous) perturbers. New method to characterize satellites (to see dark galaxies). Method tested for satellites with mass ratio: ~1:100 - 1:3. Extended to infer dark matter density profile of spirals.
 - Extending to include multiple satellites and non-spherical halos
 - comparison to lensing

Summary & Future

Summary & Future

Coming Soon!

AAS topical conference series (TCS) meeting on: "Probes of Dark Matter on Galaxy Scales"

July 2013

SOC: SC, Leo Blitz, Lars Hernquist, Manoj Kaplinghat, Chris Fassnacht, Rachel Mandelbaum, Jay Gallagher, Martin Weinberg