The CGM around Eris at z ~2-3: A Test for Stellar Feedback, Galactic Outflows and Cold Streams

Sijing Shen IMPS Fellow, UC Santa Cruz

Santa Cruz Galaxy Workshop August 17th, 2012

In collaboration with: Piero Madau, Javiera Guedes, Jason X. Prochaska, James Wadsley & Lucio Mayer

Shen et al. arXiV:1205.0270

Friday, August 17, 2012

• Galactic outflows

•Galactic outflows observed in local starburst with v ~ hundreds km/s (e.g., Shapley+2003; Veilleux+2005;Weiner+2009)

• Galactic outflows

- •Far-UV spectra of angular pairs of galaxies/ quasar-galaxies provides detailed map of the CGM metals (e.g., Steidel+2010) and H I (e.g., Rudie+2012) at higher z
- Increasing amount of data about the CGM at low redshift (e.g., Prochaska & Hennawi 2009; Chen +2010; Crighton+2011; Prochaska+2011; Tumlinson +2012; Werk+2012)

• Galactic outflows

- •Far-UV spectra of angular pairs of galaxies/ quasar-galaxies provides detailed map of the CGM metals (e.g., Steidel+2010) and H I (e.g., Rudie+2012) at higher z
- Increasing amount of data about the CGM at low redshift (e.g., Prochaska & Hennawi 2009; Chen +2010; Crighton+2011; Prochaska+2011; Tumlinson +2012; Werk+2012)

Gas from IGM inflows into galactic halos

• Galactic outflows

- •Far-UV spectra of angular pairs of galaxies/ quasar-galaxies provides detailed map of the CGM metals (e.g., Steidel+2010) and H I (e.g., Rudie+2012) at higher z
- Increasing amount of data about the CGM at low redshift (e.g., Prochaska & Hennawi 2009; Chen +2010; Crighton+2011; Prochaska+2011; Tumlinson +2012; Werk+2012)

Gas from IGM inflows into galactic halos

- At high z, "cold" accretion mode dominates (e.g., Kereš+ 2005, 2009; Dekel & Birnboim 2006; Ocvirk+2008)
- Prediction of cold stream detection
 - I) statistical prescription using cosmological volumes (e.g., Dekel+2009; van de Voort+2012) and

2) "zoom-in" simulations(e.g., Fumagalli+ 2011; Faucher-Giguère & Kereš 2011; Kimm +2011; Stewart+2011; Goerdt+ 2012)

The Eris2 Simulation

- TreeSPH code Gasoline (Wadsley et al. 2004)
- SF: $d\rho */dt = \epsilon_{SF}\rho_{gas}/t_{dyn} \propto \rho_{gas}^{1.5}$ when gas has $n_H > n_{SF}$

- Radiative cooling for H, He and metals were computed using Cloudy (Ferland+ 1998), assuming ionization equilibrium under uniform UVB (Haardt & Madau 2012)
- Turbulent diffusion model (Wadsley+ 2008; Shen+2010) to capture mixing of metals in turbulent outflows.
- Same initial set up as in Eris (Guedes+2011)

Galaxy	m _{DM} (Ms)	m _{spн} (Ms)	ε _G (pc)	NSF (cm ⁻³)
Eris2	9.8 × 10 ⁴	2 x 10 ⁴	120	20.0

The Eris2 Simulation

- TreeSPH code Gasoline (Wadsley et al. 2004)
- SF: $d\rho */dt = \epsilon_{SF}\rho_{gas}/t_{dyn} \propto \rho_{gas}^{1.5}$ when gas has $n_H > n_{SF}$

- Radiative cooling for H, He and metals were computed using Cloudy (Ferland+ 1998), assuming ionization equilibrium under uniform UVB (Haardt & Madau 2012)
- Turbulent diffusion model (Wadsley+ 2008; Shen+2010) to capture mixing of metals in turbulent outflows.
- Same initial set up as in Eris (Guedes+2011)

Galaxy	m _{DM} (Ms)	m _{sph} (Ms)	ε _G (pc)	NSF (cm ⁻³)
Eris2	9.8 × 10⁴	2 × 10 ⁴	120	20.0
Very high resolutio within Rvir at z =2. galaxy structure, satellites ar	n - 4 M particles 8, to resolve the the progenitor nd dwarfs			

The Eris2 Simulation

- TreeSPH code Gasoline (Wadsley et al. 2004)
- SF: $d\rho */dt = \epsilon_{SF}\rho_{gas}/t_{dyn} \propto \rho_{gas}^{1.5}$ when gas has $n_H > n_{SF}$
- Blastwave feedback model for SN II (Stinson+ 2006): radiative cooling shut-off according to analytical solution from McKee & Ostriker (1977).
- Radiative cooling for H, He and metals were computed using Cloudy (Ferland+ 1998), assuming ionization equilibrium under uniform UVB (Haardt & Madau 2012)
- Turbulent diffusion model (Wadsley+ 2008; Shen+2010) to capture mixing of metals in turbulent outflows.
- Same initial set up as in Eris (Guedes+2011)

		States and set of the set of the		
Galaxy	m _{DM} (Ms)	m _{SPH} (Ms)	ε _G (pc)	NSF (cm ⁻³)
Eris2	9.8 × 10⁴	2 x 10 ⁴	120	20.0
Very high resolutio within Rvir at z =2 galaxy structure, satellites a	on - 4 M particles .8, to resolve the the progenitor nd dwarfs		Hig inho resc	gh SF threshold, allow the omogeneous SF site to b olved and localize feedbac

Metal Cooling Under UV Radiation

Metal Cooling Under UV Radiation

Metal Cooling Under UV Radiation

Smagorinsky Model of Turbulent Diffusion

Wadsley+ (2008); Shen+(2010)

• Most basic turbulent model: (K_{Turb} has units of velocity × length)

$$\frac{\partial \overline{u}}{\partial t} + \overline{v}.\nabla \overline{u} = -(\gamma - 1)\overline{u}(\nabla .\overline{v}) + \nabla \kappa_{\text{Turb}}\nabla \overline{u}$$

 Smagorinsky model (Mon.Weather Review 1963) -- Diffusion Coefficient determined by velocity Shear

$$\kappa_{Turb} = l_S^2 S, \ S = \sqrt{S_{ij} S_{ij}}$$

- S_{ij} = trace-free strain rate of resolved flow; I_s = Smagorinsky length. For incompressible grid models $I_s^2 \sim 0.02 \Delta x^2$
- For SPH we use K_{Turb}= C |S_{ij}|h² with C ~ 0.05 (Wadsley, Veeravalli & Couchman 2008; See also Scannapieco & Brüggen 2008, Grief et al 2009)
- After implementation of turbulent diffusion, SPH is able to produce the entropy profile similar to grid codes

Eris2 and Its Metal-Enriched CGM at z = 2.8

Shen+ (2012) arXiV:1205.0270

$M_{vir}(M_{sun})$	R _{vir} (kpc)	M*(M _{sun})	SFR(M _s /yr)	I 2+log(O/H)	T>10 ⁵ K (%)	R _z	<zg>_{vir}</zg>
2.6×10 ¹¹	50	1.5×10 ¹⁰	20	8.50	54%	~5 Rvir	0.7 Z _{sun}

- At z=2.8, Eris2 has M_{vir} and M* close to an LBG but lower than typical observed LBGs (e.g, Steidel+ 2010)
- More than half of metals locked in the warm-hot $(T > 10^5)$ phase
- Cold, SF gas has 12+log(O/H)=8.5, within the M*-Z relationship (Erb +2006)
- The metal "bubble" extends up to 250 kpc, 5 R_{vir}

 $600 \times 600 \times 600$ kpc3 projected map of gas metallicity. The disk is viewed nearly edge on

- 600 x 600 x 10 kpc slice, projected to xy plane, disk nearly edge-on
- Max projected averaged velocity ~300 km/s (host)
- Metallicity is high is along the miner axis
 but non-zero along
 the major axis (Rubin + 2012; Kacprzak+2012)
- Average outflow velocity decrease at larger distances and join the inflow -halo fountain (Oppenheimer+ 2010)

- 600 x 600 x 10 kpc slice, projected to xy plane, disk nearly edge-on
- Max projected averaged velocity ~300 km/s (host)
- Metallicity is high is along the miner axis
 but non-zero along
 the major axis (Rubin + 2012; Kacprzak+2012)
- Average outflow velocity decrease at larger distances and join the inflow -halo fountain (Oppenheimer+ 2010)

- 600 x 600 x 10 kpc slice, projected to xy plane, disk nearly edge-on
- Max projected averaged velocity ~300 km/s (host)
- Metallicity is high is along the miner axis
 but non-zero along
 the major axis (Rubin + 2012; Kacprzak+2012)
- Average outflow velocity decrease at larger distances and join the inflow -halo fountain (Oppenheimer+ 2010)

Friday, August 17, 2012

- 600 x 600 x 10 kpc slice, projected to xy plane, disk nearly edge-on
- Max projected averaged velocity ~300 km/s (host)
- Metallicity is high is along the miner axis
 but non-zero along
 the major axis (Rubin + 2012; Kacprzak+2012)
- Average outflow velocity decrease at larger distances and join the inflow -halo fountain (Oppenheimer+ 2010)

Computing Fraction of Ions & Column Density Map

- Post-processing using photoionization code Cloudy (Ferland+ 1998)
- Incident radiation includes the extragalactic UV background (Haardt & Madau 2012) and stellar UV
- Stellar UV radiation: using Starburst99 (Leitherer+ 1999), assuming a constant SFR of 20 M_{sun}/yr.
- Escape fraction $f_{esc} = 3\%$, $J_d = J_0/(4\pi d^2)$
- Assuming gas is *optically thin*: not valid for column N_{HI} above LLS.

Photo-ionization heating due to local UV radiation is *not* taken into account.

Computing Fraction of Ions & Column Density Map

Computing Fraction of Ions & Column Density Map

CGM Metals Traced by Different Ions

- Multi-phase CGM: low and high ions co-exist in same absorbers
- Covering factors of low ions (C II, Si II) decrease more rapidly than high ions
- OVI has large covering factor up to 4 R_{vir} , $M_O(CGM) \sim 5x 10^7 M_{sun} > M_O(ISM)$

High ions: Collisional Ionization or Photoionization?

• OVI: mostly collisional ionized within 2 Rvir, but photo-ionized at larger distance

Inflowing and Outflowing CGM

- Coexistence of inflow and outflow in the CGM:
- H I: cold inflow perpetrates viral radius. with $2R_{vir}$, 90% system with N _{HI} > 10^{17.2} cm^s (LLS) is inflowing.
- Outflow gas increases the H I covering factor at large b.
- Low ions (C II or Si II) similar to H I
 - O VI: by mass 68% outflow, 32% inflow
 - C IV & Si IV: inflow and outflow contribute similarly

	HI	Si II	CII	Si IV	C IV	OVI
Inflow mass (%)	77%	66%	66%	50%	44%	32%

- Optical depth $\tau(v) = \sum_{j} (m_j Z_j/m) W_{2D}(r_{jl}, h_j) \sigma_j(v); \sigma_j(v)$ cross section (Voigt function), $W_{2D}(r_{jl}, h_j)$ 2D SPH kernel
- Rest frame equivalent width: $W_0 = c/v_0^2 \int [I e^{-\tau(v)}] dv$

- Optical depth $\tau(v) = \sum_{j} (m_j Z_j/m) W_{2D}(r_{jl}, h_j) \sigma_j(v); \sigma_j(v)$ cross section (Voigt function), $W_{2D}(r_{jl}, h_j)$ 2D SPH kernel
- Rest frame equivalent width: $W_0 = c/v_0^2 \int [I e^{-\tau(v)}] dv$

- Optical depth $\tau(v) = \sum_{j} (m_j Z_j/m) W_{2D}(r_{jl}, h_j) \sigma_j(v); \sigma_j(v)$ cross section (Voigt function), $W_{2D}(r_{jl}, h_j)$ 2D SPH kernel
- Rest frame equivalent width: $W_0 = c/v_0^2 \int [I e^{-\tau(v)}] dv$

 Most, but not all, components exist in both high and low ions -- Multiphase nature of absorbers

- Optical depth $\tau(v) = \sum_{j} (m_j Z_j/m) W_{2D}(r_{jl}, h_j) \sigma_j(v); \sigma_j(v)$ cross section (Voigt function), $W_{2D}(r_{jl}, h_j)$ 2D SPH kernel
- Rest frame equivalent width: $W_0 = c/v_0^2 \int [I e^{-\tau(v)}] dv$

Most, but not all, components exist in both high and low ions -- Multiphase nature of absorbers
Velocity range ~ ± 300 km/s

- Optical depth $\tau(v) = \sum_{j} (m_j Z_j/m) W_{2D}(r_{jl}, h_j) \sigma_j(v); \sigma_j(v)$ cross section (Voigt function), $W_{2D}(r_{jl}, h_j)$ 2D SPH kernel
- Rest frame equivalent width: $W_0 = c/v_0^2 \int [I e^{-\tau(v)}] dv$

Most, but not all, components exist in both high and low ions -- Multiphase nature of absorbers
Velocity range ~ ± 300 km/s

- Optical depth $\tau(v) = \sum_{j} (m_j Z_j/m) W_{2D}(r_{jl}, h_j) \sigma_j(v); \sigma_j(v)$ cross section (Voigt function), $W_{2D}(r_{jl}, h_j)$ 2D SPH kernel
- Rest frame equivalent width: $W_0 = c/v_0^2 \int [I e^{-\tau(v)}] dv$

•Most, but not all, components exist in both high and low ions -- Multiphase nature of absorbers •Velocity range ~ ± 300 km/s Metal enriched infalling gas: • $R_{vir} < r < 2R_{vir}$ •δ ~ 100 • $Z > 0.03 Z_{sun}$

- •Enriched gas around nearby dwarf galaxy
- Optical depth $\tau(v) = \sum_{j} (m_j Z_j/m) W_{2D}(r_{jl}, h_j) \sigma_j(v); \sigma_j(v)$ cross section (Voigt function), $W_{2D}(r_{jl}, h_j)$ 2D SPH kernel
- Rest frame equivalent width: $W_0 = c/v_0^2 \int [1 e^{-\tau(v)}] dv$

W₀-b Relation and Comparison with Observations

- Metal Line strength decline rapidly at I-2 R_{vir}
- •Line strength decline less fast for C IV, OVI and H I
- Ly α: remains strong to
 >~ 5 R_{vir}
- Broadly consistent with observations from Steidel+ (2010) and Rakic+ (2011)
- W₀ for metal ions: Higher than simulations without strong outflows (e.g., Fumagalli+ 2011; Goerdt + 2012)
- At small b, lines are mostly saturated -- W₀ determined by velocity
- 3 orthogonal projections, each has 500 x 500 evenly-spaced slightlines within
 b = 250 kpc region centered at the main host

W₀-b Relation and Comparison with Observations

 3 orthogonal projections, each has 500 x 500 evenly-spaced slightlines within b = 250 kpc region centered at the main host

Covering Factor of H I and Metal Ions

O VI has covering factor (f_c) of unity in 2 R_{vir.} C IV also have large f_c
C II, Si II, Si IV: smaller f_c, decline fast when b > R_{vir}

- •In reasonable agreement with Rudie+ (2012) for H I, but in the low side
- •HI covering factor: slightly higher, but comparable to simulations without strong outflows (e.g. Fumagalli+2011, Faucher-Giguère & Kereš 2011)

- Cold (T < 10^5 K) inflow rates at R_{vir} d $M_{in, cold}/dt = 18 M_{sun}/yr$, comparable to the SFR; $M_{in, hot}/dt \sim 5M_{sun}/yr$
- 35% inflow gas from nearby dwarfs
- Within 2 Rvir: 90% of LLS are inflowing gas, v_{in} <~ 150 -200 km/s

Inflow only, optically thick gas

- Cold $(T < 10^5 \text{ K})$ inflow rates at R_{vir} $dM_{in, cold}/dt = 18 M_{sun}/yr$, comparable to the SFR; $M_{in, hot}/dt \sim 5M_{sun}/yr$
- 35% inflow gas from nearby dwarfs
- Within 2 Rvir: 90% of LLS are inflowing gas, v_{in} <~ 150 -200 km/s

Inflow only, optically thick gas

- Cold (T < 10^5 K) inflow rates at R_{vir} dM_{in, cold}/dt = 18 M_{sun}/yr, comparable to the SFR; M_{in, hot}/dt ~ $5M_{sun}$ /yr
- 35% inflow gas from nearby dwarfs
- Within 2 Rvir: 90% of LLS are inflowing gas, v_{in} <~ 150 -200 km/s

- Cold (T < 10^5 K) inflow rates at R_{vir} dM_{in, cold}/dt = 18 M_{sun}/yr, comparable to the SFR; M_{in, hot}/dt ~ $5M_{sun}$ /yr
- 35% inflow gas from nearby dwarfs
- Within 2 Rvir: 90% of LLS are inflowing gas, v_{in} <~ 150 -200 km/s
- Cold inflows are enriched: $Z_{LLS} > 0.03 Z_{sun}$ for r < R_{vir} , and $Z_{LLS} > 0.01 Z_{sun}$ within $2R_{vir}$
- Still lower than outflow metallicities $Z_{out} = 0.1-0.5 Z_{sun}$

The Novi-b Relation in Eris2: Comparison with Low z Starburst Galaxies

- At z = 2.8, Eris2 has sSFR ~ 10⁻⁹ yr⁻¹, close to the local star burst galaxies in Tumlinson + (2011) and Prochaska+ (2011)
- •N _{OVI}-b relation agreement with observations; but higher at b< 0.1 R_{vir}
- Typical N _{OVI} >~10¹³⁻¹⁴ cm⁻² up to 3 R_{vir}

•N _{OVI} -b mostly determined by SFR?

• Rvir ~ 160 kpc for sub-L* galaxies (Prochaska+ 2011)

• $R_{vir} \sim 200-300$ kpc for L* galaxies (Tumlinson+2011)

The Evolution of the CGM (Down to z=2.8)

The Evolution of the CGM (Down to z=2.8)

The Effect of Gas Self-Shielding: W₀-b

 Transition from optically thin to thick: n_H ~ 0.01 cm⁻³ (e.g. Fumagalli +2011; Goerdt +2012)

• Increase N_{H I}, N_{Si II}, decrease N C_{IV}, N_{CII}, N_{SiIV}

 OVI is not affected by much

 Metal lines: change in W₀ is not significant since lines are saturated

 Ly α: The data points within 10 kpc increases significant, W₀ become much higher than observations

The Effect of Metal and Thermal Diffusion - I

No turbulent mixing I. Larger metal bubble (cf. Shen+ 2010);

- 2. "Clumpier" CGM due to higher Z and metal cooling;
- 3. Inflowing dwarfs are enriched, but less for the material in between

The Effect of Metal and Thermal Diffusion - I

No turbulent mixing I. Larger metal bubble (cf. Shen+ 2010);

- 2. "Clumpier" CGM due to higher Z and metal cooling;
- 3. Inflowing dwarfs are enriched, but less for the material in between

The Effect of Metal and Thermal Diffusion - II

- The covering factor of metal ions at $\log N > 13$ does not change significantly
- The covering factor of LLS H I, C II and Si II decreases because the CGM is clumpier
- CF for more diffuse H I and C IV increases because of more efficient wind

The Effect of Metal and Thermal Diffusion III

Covering factor of both H I and low ions decreases

Inflowing gas with N HI > $10^{17.2}$ cm⁻² and N CII> 10^{13} cm-2 decreases from 22% to 16% in R_{vir} and from 10% to 5% in 2R_{vir}

Friday, August 17, 2012

Effect of Metal Cooling on the CGM

Distribution of Metals and lons in ρ -T plane

Summary

- Inflows and outflows coexist, about 1/3 of gas (by mass) within R_{vir} is outflowing, consistent with findings from cosmological simulations (e.g., van de Voort +2012);
- OVI absorbers have *both* collisional ionized and photoionized components, depending on distance. Large covering factor with typical $N_{OVI} > 10^{14}$ cm⁻², consistent with the data from local starbursts (Tumlinson+2011, Prochaska+2011).
- Synthetic spectra shows inflows and outflows are multi-phase, although *not all* the O_{VI} systems has corresponding low ion counterpart.
- W₀-b relation from Eris2 appears to be in reasonable agreement of observations of Steidel +(2010). Feedback & outflows are important, however inflowing material contributes significantly to the absorption line strength.
- The covering factor of LLS system is about 27% within Rvir, in good agreement with Rudie+ (2012), it is slightly higher than, but consistent with simulations with no strong outflows (Fumagalli+ 2011; Faucher-Giguère & Kereš 2011); 90% of LLS within 2R_{vir} are inflowing cold streams.
- The cold streams are enriched with CF of CII > 10^{13} about 22% within R_{vir} -- possible to detect inflows with metal line absorption.
- Metal mixing enhance the detection of cold flows using metals.
- Cooling due to metal lines are important for generating cooler phase of the CGM and possibly crucial for detection of the low ions.