Radiative feedback in cosmological simulations of galaxy formation

Sebastian Trujillo-Gomez

in collaboration with: Anatoly Klypin (NMSU) Daniel Ceverino (UA Madrid) Pedro Colin (UNAM) Joel Primack (UCSC)

Santa Cruz Galaxy Workshop - August 14, 2012

Radiation pressure expected to have 3-fold effect on galaxy formation:

I. disruption of molecular clouds before SNe/ regulation of SF (Hopkins+II)

2. provide turbulence in MCs (Krumholz+12)

3. drive (warm) gas outflows at high-z (Murray+11)

radiative feedback in *hydroART*:

$$F_{\rm rad} = (\tau_{\rm UV} + \tau_{\rm IR}) \frac{L}{c}$$
 (Murray+10)

$$P_{\rm rad} = \frac{F_{\rm rad}}{r^2}$$
 (Hopkins+11)

 $\tau_{\rm IR} = \Sigma_{\rm gas} \kappa_{\rm IR}$

estimate L ~ 100P_{SN} per solar mass for ~ 3Myr (STARBURST99)

-> no free parameters

The simulations

in a fully cosmological setting, we would like to know if radiation pressure is able to:

- I. drive massive outflows
- 2. prevent formation of a massive bulge
- 3. regulate SF
- 4. reduce the baryon fraction

T_{IR} ~ 50 gives maximum possible radiative forcing

run	volume	redshift	halo mass	R _{vir}	resolution (proper)	SF model	FB model	τυν	τ _{IR}
MW_SN	10 Mpc ³	z=3	1.8x10 ¹¹ Ms	45 kpc	19 рс	n _{SF} = I cm ⁻³	SN+stellar winds	-	-
MW_SN+RP	10 Mpc ³	z=3	1.8x10 ⁺⁺ M _s	45 kpc	19 рс	n _{SF} = 1 cm ⁻³	SN+stellar winds+RP	I	50
dwarf_SN+RP	10 Mpc ³	z=0	3.0x10 ¹⁰ Ms	80 kpc	38 рс	n _{SF} = 6 cm ⁻³	SN+stellar winds+RP	Ι	50

RP regulates star formation by preventing gas collapse

-> galaxy dominated by diffuse phase but CGM becomes denser

RP increases galactic wind <u>but</u> gas is reaccreted
-> gas circulates in galactic fountains / prevents bulge buildup

RP quenches accretion of halo gas into galaxy

reduced feedback energy limits mass and velocity of large-scale outflows

MW: gas temperature profiles

MW: baryon fractions

dwarf: mass distribution

 $M_{stars} = 1.4 \times 10^8 M_{sol}$

 $M_{gas} = 1.5 \times 10^9 M_{sol}$ (mostly cold within 10 kpc)

at z=0, very small amount of mass in galactic winds and considerable amount of (cold) accretion into CGM

dwarf: gas temperature profiles

 \checkmark RP feedback is able to strongly reduce and regulate the SF in massive galaxies *and* dwarfs

 \checkmark It does so by ejecting/heating the disk gas in a continuous galactic fountain

✓ The formation of a massive bulge is completely suppressed at z > 3 in an M^{*} galaxy

 $\checkmark RP$ produces a dwarf galaxy with slowly rising rotation curve

 \checkmark In a dwarf's shallow potential, even a modest stellar component is able to reduce the fraction of baryons within R_{vir} by 50%

 \checkmark RP reduces the early SFR by a factor of ~10. It leads to a late buildup of the stellar component in dwarfs consistent with downsizing ➡ In massive galaxies strong RP does not produce outflows

➡ in a dwarf, the fraction of baryons locked in stars is ~2 times larger than predictions sits slightly above BT-F

thanks