The Epoch of Disk Settling: $z \approx 1$ to Today

Susan Kassin (NPP Fellow, NASA Goddard), Ben Weiner (Steward), Sandra Faber (Lick/UCSC), Jonathan Gardner (NASA Goddard) + DEEP2 Survey members

Simulation by Fabio Governato, $V=220$ km/s, 50 Mpc box, 170 pc resolution, $H_2 +$ Z line cooling
What do these simulations tell us about galaxy formation?

• Much of the mass and angular momentum of galaxies may come from cold flows

• There is more merging/accretion at early times
At a redshift of about 1...

Blue galaxies are for the most part in place,

- M_B brighter by only ~ 1 mag compared to today (e.g., Bell+04, Willmer+06, Faber+07)
- Number density doesn’t change (ditto)
- Stellar mass unchanging to within uncertainties (e.g., Bundy+06, Borch+06, Pozzetti+10)
- Sizes are only marginally smaller (factor of 1.4; Dutton+11)

but there are hints that they are different beasts than blue galaxies today.

- Higher star-formation rates by x10 (e.g., Noeske+07)
- More disturbed morphologies (e.g., Abraham & van den Berg+01, but see Oesch+10 for higher mass)
- Higher molecular gas fractions (Tacconi+10, Daddi+10)
Sample selection is key!

- If we select high-z galaxies to be like those today, we will minimize evolution.

Our final sample is selected essentially on magnitude ($R_{AB} < 24.1$) and emission line strength.
DEEP2 Kinematics Sample: Distribution in Color-M$_*$

- ~10K galaxies in DEEP2 field 1 (grey)

- 544-galaxy sample discussed in this talk (black) follows “blue cloud”

SAK+12b
Most Blue Galaxies Today Play Nice

Stars and gas are well-ordered:

• rotate in $x - y$ plane
• move up and down a bit in z

Velocity Dispersion (σ_g)

Rotation Velocity (V_{rot})
Most Blue Galaxies at $z \sim 1$ Play Rough

They rotate and show disordered motions

Velocity Dispersion (σ_g) quantifies disordered motions...

Rotation Velocity (V_{rot})

(...like our Milky Way once was)
\(\sigma_g \) is Different at High Redshift

Galaxy spectra are observed with thin slits...

but galaxies are smaller in the past

\[
z \sim 0.001 \\
\text{Slit is 1" wide} = 0.02 \text{ kpc}
\]

\[
z \sim 1.0 \\
\text{Slit is 1" wide} = 8 \text{ kpc}
\]
At High-z, σ_g Quantifies the Amount of Disordered Motions

3 Example Galaxies:

V_{rot} - dominated
- HST/ACS, $z \sim 1$
- $V_{\text{rot}} \sin i = 208$ km/s
- $\sigma_g = 40$ km/s

Mixed
- $V_{\text{rot}} \sin i = 75$ km/s
- $\sigma_g = 55$ km/s

σ_g - dominated
- $V_{\text{rot}} \sin i = 29$ km/s
- $\sigma_g = 59$ km/s

Kinematics are measured from spectra and the effects of seeing are modeled.

Weiner+ 06a,b, Kassin+07, Covington+10
Stellar Mass Tully-Fisher Relation Since $z=1.2$
Generally Only Well-Ordered Galaxies Lie on Ridgeline

$0.65 < z < 0.925$

- = disturbed or compact morphology

- = normal morphology
New Kinematic Quantity to Trace Galaxy Potential Wells

\[S_{0.5}^2 \equiv 0.5V_{rot}^2 + \sigma_g^2 \]
Stellar Mass Tully-Fisher Relation

$\log S_{0.5} = a + b \log M + c$

where c is the intrinsic scatter.

Faber-Jackson
from Gallazzi+06

$S_{0.5} = \sqrt{0.5V^2 + \sigma_g^2}$ (km s$^{-1}$)

SAK+07
Creating a Mass-Limited Sample

\[9.8 < \log M. \ (M_\odot) < 10.7 \]
Kinematic Evolution of the Mass Limited Sample

$(9.8 < \log M_\star (M_\odot) < 10.7)$

Decrease in σ_g (5.0σ significance)
Increase in V_{rot} (4.2σ) and $S_{0.5}$ (3.6σ) with time.

Blue galaxies become more ordered and increase in potential well depth over the last 8 billion years.

SAK+12b
Kinematic Evolution of the Mass Limited Sample

\[(9.8 < \log M_\odot < 10.7)\]

Decrease in \(\frac{\sigma_g}{S_{0.5}} (5.0\sigma)\) and Increase in \(\frac{V_{\text{rot}}}{S_{0.5}} (3.0\sigma)\) with time

Blue galaxies become more ordered and increase in potential well depth over the last 8 billion years.

SAK+12b
Higher mass galaxies are the most evolved at all z (higher V_{rot}, lower σ_g). Lower mass galaxies are the least evolved at all z (lower V_{rot}, higher σ_g).

SAK+12b
When is a disk galaxy *settled*?

Settled: $\frac{V}{\sigma_g} > 3$

Not Settled: $\frac{V}{\sigma_g} < 3$

<table>
<thead>
<tr>
<th>$\frac{V}{\sigma_g}$</th>
<th>σ_g</th>
<th>V_{rot}</th>
<th>z</th>
<th>Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>0.84</td>
<td>5.6</td>
<td>0.95</td>
<td>4.9</td>
</tr>
<tr>
<td>13004257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>1.04</td>
<td>1.8</td>
<td>1.06</td>
<td>1.6</td>
</tr>
<tr>
<td>13042864</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12024872</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12012530</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12012211</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fraction of Settled Galaxies with Redshift

- \(f_{\text{settled}} \equiv \frac{\text{fraction of}}{\text{galaxies with } V/\sigma_g > 3} \)
- Settled fraction increases with time
- The more massive a galaxy population is, the more settled it is at any \(z \)
- Same qualitative behavior for thresholds \(1 < V/\sigma_g < 4 \)

SAK+12b
What Processes Cause Disk Settling/Formation?

1. **Mergers**, minor & major, rile up disks (e.g., Covington+10).

2. **Mass accretion** might also disturb disks (e.g., Bournaud+11, Cacciato+12)

 Galaxies likely had larger gas reservoirs in the past:

3. **Should cause more SF** => more **feedback**

4. **Violent disk instabilities** (e.g., Bournaud+11, Cacciato+12)

 The process(es) responsible need to decline earlier in more massive systems.
Conclusions

1. Most disk galaxies *not* in their final state at $z \sim 1$.
 - they have significant disturbed motions and morphologies

2. Galaxies increase in V_{rot} & $S_{0.5}$ and decrease in σ_g with time.

3. The more massive a galaxy is, the more kinematically ordered it is at any time.

What roles do minor/major mergers, feedback, and accretion play?
How can simulations or SAMs be used to figure this out?

We are essentially seeing the creation of the Hubble Sequence for disk galaxies.
Comparison to other surveys of blue galaxy kinematics

Log M_\star (M_\odot) > 10.3
Log M_\star (M_\odot) < 10.3
no M_\star measurement