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Some pre-to-post-CMB physics:
Inflation leads to near scale-invariant primordial density spectrum 

Gets processed by growth on sub- 
and super-horizon scales (GR):

Multi-species fluid of 
CDM+baryon+photon+neutrino 
→linear Boltzmann solver
(e.g. Ma & Bertschinger 1995)
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Peaks vs. halos

Identify the peak (or region) from which an object forms

e.g. cluster halo at z=0 corresponding peak patch
in white noise field

We want to increase the resolution locally in this patch...

1:1 mapping
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Disentangling scales...adaptive meshes

Region of interest
at high resolution

Gaussian density perturbation field:

galaxy, cluster, first star...

Large-scale modes
at low resolution
environment, sample variance

(cf. Bertschinger 2001, GRAFIC-2)

Need to find an algorithm to 
generate such multi-scale 
density perturbation fields

hard in Fourier space!
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Thinking in real space...
because that’s where the peak patch lives...

Remember the generation of a density field with given power spectrum:

�(⇥r) = F�1
n

kns/2 T (k)G(0, 1)
o

These are products in k-space, and thus become convolutions

�(⇤r) = F�1
n

kns/2 T (k)
o

⇥ F�1 {G(0, 1)}

= T (r) �G(0, 1)

real space TF Gaussian white noise

What does it mean?

(cf. also Salmon 1996)
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Real space : the baryon acoustic wave
The T(r) kernel for baryons over cosmic time:
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z=2000
z=1400
z=1000

Propagating wave for z>1000

Convolution superimposes waves and growing modes on noise.

sound speed ~ c/3
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Stalled wave for z<1000
sound speed drops after recomb
perturbations grow

Linear regime: no interaction between waves.
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Multi-scale convolution picture

Advantages:
•Operating in real space
•No inherent periodicity (Sirko 2005)
•Easy to deal with finite support
•No problems with sharp boundaries

�(~r) = T (r) ? G(0, 1)

4 O. Hahn

k-space sampled correlation function is somewhat spurious. It
is partly due to the periodic component, as the periodic real
space kernel shows a similar suppression. But it is mainly due
to an additional integral constraint. For the k-space sampled
kernel, P (k = 0) = 0, so that

0 =

�
⇤(x) d3x ⇥ 4⌅

�
⇤(r) r2 dr, (6)

where the latter equality holds in the case of a spherically
symmetric correlation function and amounts to the usual in-
tegral constraint on the two-point correlation function. For
a finite simulation volume, the correlation function is thus
o⇥set by an additive constant which is equal to the integral
over the correlation function outside the simulation volume.
This additive constant leads to the additional deviation seen
between the k-space sampled correlation function and the pe-
riodic real-space equivalent which is simply amplified by the
multiplication with r2. Any box with zero mean density will
therefore fulfill the integral constraint over the box instead of
over an infinite volume leading to a similar discrepancy. Boxes
with a non-zero mean density would circumvent this problem,
but they are incompatible with periodic boundary conditions,
and the di⇥erence in mean density has to be incorporated in a
change to di⇥erent e⇥ective cosmological parameters. We will
not investigate further the possibility of simulations with non-
zero mean density but kindly refer the reader to Sirko (2005)
for a detailed discussion of this possibility.

2.3 Generating a nested initial density field

In order to generate initial conditions for a nested subdomain,
the white noise for the subgrid has to be consistent with that
of the coarse grid. This is achieved by the method of Ho⇥-
man & Ribak (1991) which, in our case, simply states that
the average over the eight children of a coarse cell inside the
refinement region has to be equal to the parent cell value.
Furthermore, the variance of the subgrid random field is eight
times that of the parent grid field for the refinement factor of
2 that we adopt. Thus (cf. Pen 1997; Bertschinger 2001) for
unconstrained white noise fields ⇧⇥ and ⇧⇥+1 for levels ↵ and
↵+1 respecitvely, we find for the constrained white noise fields
µ⇥,⇥+1

µ⇥ = ⇧⇥, (7)

µ⇥+1 = Pµ⇥ + ⇧⇥+1 � PR⇧⇥+1, (8)

where P is the straight injection and R the restriction by av-
eraging operator. Further levels can be computed by repeating
eq. (8) for ↵+ 2 and so on.

In the following, we will describe how the convolution with
the real-space transfer function, eq. (3), is performed when a
refinement region is present.

2.3.1 The first refinement level

In Figure 3, we show schematically the set-up for one addi-
tional refinement level. The top grid domain � consists of the
domain �2 covered by a refinement grid and the non-refined
part �\�2. The refinement region �2 at twice the resolution is
given by ��. The density field on the top grid level ↵ is deter-
mined as in the unigrid case by computing �⇥ = T (r)⌥µ⇥ on �
with periodic boundary conditions automatically satisfied by
the FFT. For the refined region, several contributions will be
co-added:

�1

a) top grid

2N

b) subgrid

��
p

N

��

�2

�2,p

Figure 3. Schematic representation of a set-up with one refinement
level. The left panel a) shows the top grid � which consists of a
region �2 covered by a refinement grid and the non-refined part
�\�2. The right panel b) shows the sub-grid domain �� which is
equivalent to �2 in the left panel but has twice the resolution. To
this sub-grid a padding region ��

p will be added when performing
the FFT convolution with isolated boundaries and is denoted by
�2,p on the top grid.

1. The coarse grid contribution �⇥+1
coarse to the refinement re-

gion is computed by zeroing µ⇥ on �2 to obtain µ⇥
�\�2

,

computing the convolution �⇥1 = T (r) ⌥ µ⇥
�\�2

and interpo-

lating �⇥1 from �2 to �⇥+1
coarse. We use tri-cubic interpolation

for this purpose.
2. On level ↵ + 1 isolated boundary conditions apply, so ��

has to be padded to twice its size 2N so that an FFT-based
convolution is still possible. In order to find the density �⇥+1

self

due to the sub-grid alone, we zero µ⇥+1 on ��
p to obtain µ⇥+1

�0

and compute the convolution �⇥+1
self = T (r) ⌥ µ⇥+1

�0 .
3. In order to reduce errors at the boundary, we add a cor-
rection term �⇥+1

bnd that accounts for the fluctuations just
outside ��. To this end, we subtract the coarse grid value
of the white noise field from each of 8 child cells, equivalent
to “unapplying” the Ho⇥man-Ribak method. We then zero
the result of this operation on ��, so that it is non-zero
only on ��

p and obtain µ̂⇥+1
�0

p
. Since boundary conditions

are isolated, it would be necessary to truncate the trans-
fer function in order to have a non-periodic unconstrained
white noise field. We however found that a truncation in-
troduces larger errors than assuming periodicity (on scales
larger than the subgrid). Finally, we compute the FFT-
convolution �⇥+1

bnd = T (r) ⌥ µ̂⇥+1
�0

p

4. In a last step, we restrict the result of the the previous
step also to the coarse grid, i.e. onto �2,p in order to include
some information about fluctuations on smaller scales.

Finally, all three contributions are added to find the refined
density field

�⇥+1 = �⇥+1
self + �⇥+1

coarse + �⇥+1
bnd (9)

on ��. In order to further reduce errors due to the boundary,
we allow for optional additional padding of the subregion and
cut out the desired region at the end.

2.3.2 Further refinement levels

For further refinement levels, the same steps 1-4 from above
are repeated at level ↵ + i, i � 2, with the only di⇥erence
being that the coarse grid contribution �⇥+i

coarse is computed us-
ing isolated boundary conditions on ↵+ i� 1, i.e. with a zero

c� 2010 RAS, MNRAS 000, 1–18

Multi-scale convolutions relatively easy to deal with: 
sample “propagator” at different resolutions

important: need to be locally-mass conserving
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DM (N-body) initial conditions

Lagrangian perturbation theory 
relates density perturbations to displacements and velocities

Multi-scale initial conditions 5

padded random field µ⇤+i�1. Furthermore, all coarse contri-
butions have to be interpolated down to this level. Let P be
the interpolation operator, then

�⇤+i = �⇤+i
self + �⇤+i

bnd +
⇤

j=0,...,i�1

Pi�j
⌅
�⇤+j�1
coarse

⇧
, (10)

where Pq [·] indicates an interpolation between q levels. Again,
we use tri-cubic interpolation for this purpose.

3 INITIAL PARTICLE POSITIONS AND
VELOCITY FIELDS

In this Section, we briefly summarize the application of first
and second order Lagrangian perturbation theory to obtain
the initial displacement and velocity fields which are based
on solutions of Poisson’s equation. For details, we kindly refer
the reader to the wide field of existing literature on Lagrangian
perturbation theory (e.g. Buchert et al. 1994; Bouchet et al.
1995; Scoccimarro 1998; Bernardeau et al. 2002). We then
summarize the multi-grid algorithm which solves Poisson’s
equation numerically before we discuss its extension to the
adaptive multi-grid algorithm which provides solutions to
Poisson’s equation on nested grids. FInally, we examine several
methods to obtain velocity and displacement fields that have
the same behaviour at large wave numbers as those obtained
with the traditional k-space sampling.

3.1 Lagrangian perturbation theory

3.1.1 First order perturbations

Lagrangian perturbation theory describes the evolution of
density perturbations in the rest-frame of the fluid. The posi-
tion x of a fluid element at time t with respect to its initial
position q, and the respective velocity, can then be written as

x(t) = q+ L(q, t), ẋ(t) =
d

dt
L(q, t) (11)

where the assumption of time separability can be shown
to hold for small displacements, D(t) represents the time-
evolution of the perturbation, and L(q) we call the “displace-
ment field”. The displacement field is derived using perturba-
tion theory.

It can be easily shown that at first order in the perturba-
tions (cf. Zel’Dovich 1970), the displacement field L is simply
the gradient of a potential ⇥,

L(q) = � 2

3H2
0a

2D(t)
rq⌅(q, t) ⌅ D�1(t)rq⇥(q, t), (12)

where H0 is the Hubble constant, a is the expansion factor at
time t, D(t) is the linear growth factor and ⌅ is the gravita-
tional potential, obeying Poisson’s equation,

�q⌅(q, t) =
3

2
H2

0a
2�(q, t). (13)

Since the velocities are given by the gradient of a potential,
velocities are irrotational, i.e. r ⇤ ẋ(t) = 0, in this approxi-
mation.

Note that the Gaussian over-density field � is the source
field of the displacements. It is not the density field that is
measured after displacing the fluid elements, which is non-
Gaussian. We give a derivation of the latter in Section 5.2.
The Gaussian field � should not be used to impose an initial
density field for the baryonic component.

In order to obtain the displacement vectors from the ini-
tial over-density field �, Poisson’s equation has to be solved
numerically. The most common approaches use an FFT based
Poisson solver (e.g. Bertschinger 2001), while we chose a multi-
grid based Poisson solver as it can be easily extended to an
adaptive multi-grid solver which is able to handle nested adap-
tive grids in a very natural way.

3.1.2 Second order perturbations

Several studies have shown (see e.g. Scoccimarro 1998; Crocce
et al. 2006; Tatekawa & Mizuno 2007) that first order La-
grangian perturbation theory (cf. Section 3.1.1) might not be
accurate enough for current simulations as it leads to e.g. sig-
nificantly underestimated higher order moments of the density
probability distribution functions at early times. At the next
higher order, the displacement field contains not only con-
tributions from the gravitational potential, but also from a
second-order potential that is sourced by the o⇧-trace compo-
nents of the deformation tensor, i.e.

L(q, t) = D+(t)rq⇥(q, t) +D2(t)rq⇤(q, t), (14)

where ⇤ obeys the Poisson equation �q⇤(q, t) = ⇤(q, t), with

⇤(q, t) = �1

2

⇤

i,j

⌅�
�qi�qj⇥

⇥2 � (�qi�qi⇥)
�
�qj�qj⇥

⇥⇧
, (15)

and D+(t) is the growth factor of linear perturbations, and
D2(t) ⇧ 3

7D+(t). Adding second order perturbation theory is
thus conceptually identical to repeating the steps for first order
displacements: After computing the source-field ⇤ using finite
di⇧erences, Poisson’s equation can be solved numerically using
the (adaptive) multi-grid scheme. A similar adaptive approach
to generate initial conditions at second order has been made
by Jenkins (2010) who use a tree-PM method to evaluate the
second order contribution.

3.2 Multi-grid solution of Poisson’s equation

Both first and second order Lagrangian perturbation theory
for velocity and displacement fields require the numerical so-
lution of Poisson’s equation followed by calculating gradients.
This can be achieved by using the multi-grid algorithm (e.g.
Fedorenko 1961; Brandt 1973). In order to solve Poisson’s
equation

�⌅(x) = f(x) on domain ⌅, (16)

with periodic boundary conditions in our case, we cover ⌅
with a hierarchy of grids M0,M1, . . . ,Mm of respective grid
spacing h0, h1, . . . , hm, where h⇤/h⇤+1 = 2, i.e. a refinement
factor of 2 between multi-grid levels.

Define I⇤�1
⇤ as the restriction and I⇤+1

⇤ as the injection op-
erator. We use the Full Approximation Scheme (FAS – Brandt
1977), see also Trottenberg et al. (2001), to solve the discrete
form of equation (16) on grid � given by

L⇤u⇤(x) = f ⇤(x) for x ⌃ M ⇤, (17)

where L is a finite di⇧erence approximation to the Laplacian
(as in Table 1) and u⇤ is an approximation to ⌅ on grid M ⇤.
The residual r⇤(x) can then be written as r⇤ = f ⇤�L⇤u⇤. FAS
then uses these residuals to correct the solution on level �� 1,
so that (note that operators do not commute)

L⇤�1u⇤�1 = I⇤�1
⇤ r⇤ + L⇤�1I⇤�1

⇤ u⇤, (18)

c� 2010 RAS, MNRAS 000, 1–18

�q� / �

need to solve Poisson’s equation

adaptive multi-grid  (Fedorenko 1961, Brandt 1973,1977)
can achieve this on nested grids. But uses finite differences!

straightforward to generalize to 2LPT

L(q) /rq�(q, t)

at 1st order, displacement field is proportional to gravitational force (Zel’dovich 1970)
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Fourier space properties of finite differences6 O. Hahn

Order n Laplacian L Gradient G

exact: �2
x �x

2:
⇥

1 �2 1
⇤ 1

2

⇥
�1 0 1

⇤

4: 1
12

⇥
�1 16 �30 16 �1

⇤ 1
12

⇥
1 �8 0 8 �1

⇤

6: 1
180

⇥
2 �27 270 �490 270 �27 2

⇤ 1
60

⇥
�1 9 �45 0 45 �9 1

⇤

exact: �k2 �i k
2: �2 [� cos(k) + 1] �i sin(k)
4: � 1

6 [cos(2k)� 16 cos(k) + 15] � i
6 [� sin(2k) + 8 sin(k)]

6: � 1
90 [�2 cos(3k) + 27 cos(2k)� 270 cos(k) + 245] � i

30 [sin(3k)� 9 sin(2k) + 45 sin(k)]

Table 1. Finite di�erence stencils in one dimension for the Laplacian L and gradient operators G up to 6th order (top rows) and their
respective Fourier transforms eL and eG (bottom rows).

is obtained. This is equivalent to solving

L⌅�1u⌅�1 = I⌅�1
⌅ f ⌅ + ⇥ ⌅�1

⌅ (19)

on level ↵� 1, where

⇥ ⌅�1
⌅ ⇤ L⌅�1I⌅�1

⌅ u⌅ � I⌅�1
⌅ L⌅u⌅. (20)

The grid at level ↵ thus provides additional source terms ⇥ to
the equation at level ↵� 1 in addition to the restricted source
f ⌅�1 ⇤ I⌅�1

⌅ f ⌅ accounting for the non-commutative nature of
the operators – eq. (20) is just the commutator

⇤
L, I⌅�1

⌅

⌅
of

the Laplacian and the restriction operator.
The complete FAS multi-grid scheme then consists of the

following algorithm to solve L⌅u⌅ = f ⌅, starting with ↵ = m:

1. If ↵ = 0, set u0 ⇤ 0.
2. Apply �1 smoothing steps, u⌅

i ⇤ S
�
u⌅
i�1, f

⌅
⇥
, i = 1, . . . , �1

3. Calculate the residual, r⌅ ⇤ f ⌅ � L⌅u⌅

4. Restrict the residual, r⌅�1 ⇤ I⌅�1
⌅ r⌅

5. Restrict the smoothed solution, u⌅�1 ⇤ I⌅�1
⌅ u⌅

�1

6. Apply the ⇥ -correction, f ⌅�1 ⇤ r⌅�1 + L⌅�1u⌅�1

7. Apply FAS scheme recursively to solve L⌅�1u⌅�1 = f ⌅�1

8. Correct the solution u⌅ ⇤ u⌅
�1 + I⌅⌅�1

�
u⌅�1 � I⌅�1

⌅ u⌅
�1

⇥

9. Apply �2 smoothing steps, u⌅
i ⇤ S

�
u⌅
i�1, f

⌅
⇥
, i = 1, . . . , �2

The first step ensures that the mean of the potential van-
ishes and that the algorithm converges in the case of periodic
boundary conditions. For non-periodic boundary conditions,
a direct solution would need to be computed. Throughout
each cycle we ensure periodic boundary conditions, whenever
u is changed. The scheme is to be repeated until the norm of
the residual, computed after step 9, falls below some desired
threshold. Since we only call FAS once in step 7, our approach
uses only V-cycles.

We found excellent convergence, i.e. a reduction of the
residual by at least one order of magnitude per iteration, for
all finite di⇤erence approximations of the Laplacian that we
tested (up to sixth order, cf. Table 1) using the red-black
Gauss-Seidel method as the smoothing operation S

�
u⌅, f ⌅

⇥

with �1 = �2 = 3 sweeps, simple averaging over the 8 child
cells of one coarse cell as the restriction operation I⌅�1

⌅ and
straight injection of the coarse cell value into the 8 child cells
as the prolongation operation I⌅⌅�1.

3.3 Adaptive multi-grid

We will now describe the extension of the FAS multi-grid al-
gorithm described above to additional nested adaptive grids,
M ⇥m+1, . . .M ⇥m+k, covering non-coextensive subdomains ⇥⇥ i,
i = 1, . . . , k with ⇥⇥ i+1 ⌅ ⇥⇥ i. In our case, the M ⇥ are simply

Order n Flux operator F

1:
⇥

�1 1
⇤

3: 1
12

⇥
�1 15 �15 1

⇤

5: 1
180

⇥
2 �25 245 �245 25 �2

⇤

Table 2. Finite di�erence flux operators for the Laplacian. Con-
volved with [�1 1 ], these become the respective Laplacians of order
(n+ 1).

rectangular grids. Two modifications have to be made: First,
restriction I⌅�1

⌅ and prolongation I⌅⌅�1 only operate on over-
lapping regions ⇥⇥ i ⇧ ⇥⇥ i+1 of the domains. The remainder
⇥⇥ i\⇥⇥ i+1 is treated as if it would reside at the finest level.
Second, Poisson’s equation on additional sub-grids is solved
with the coarse grid solution u⌅ acting as a boundary condi-
tion for the finer level Poisson equation L⌅+1u⌅+1 = f ⌅+1. The
boundary conditions is realised by adding ghost zones to the
sub-grids M ⇥ to which boundary values are interpolated.

We use polynomial interpolation using only coarse grid
information parallel to the fine grid surface. Using these in-
termediate values together with values inside the fine grid, we
use another polynomial interpolation step normal to the fine
grid surface (cf. Martin & Cartwright 1996). The order of the
interpolating polynomial is chosen identical to the order of the
finite di⇤erence scheme for the Laplacian.

In a second step, we correct the interpolated ghost zone
values so that the coarse flux matches the fine flux across the
coarse-fine boundary. This procedure can be easily understood
by rewriting Poisson’s equation in the following way:

�⇤(x) = r ·r⇤(x) = f(x) (21)

can be integrated over one grid cell (in one dimension for no-
tational simplicity) to yield

⌃ x+h/2

x�h/2

⌥x F⇥(x
⇥) dx⇥ = mi, (22)

where mi =
⇧

f(xi) dx
⇥ is the mass contained in cell i, and

F⇥ ⇤ ⌥x⇤ is the potential flux which we will discuss now.
Applying the divergence theorem, we find that

F⇥(x+ h/2)� F⇥(x� h/2) = mi, (23)

i.e. the mass in cell i generates a flux through the cell surfaces
given by F⇥. In order for the adaptive multi-grid scheme to
be conservative, the flux across common surfaces has to be
identical. This is trivially fulfilled for inner cells but care has
to be taken at outer coarse-fine boundaries.

The flux operators F are matched to the order of the

c⇥ 2010 RAS, MNRAS 000, 1–18
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Laplacian and given in Table 2. They are gradient operators
of order n�1 on the cell boundaries. When convolved with the
first order gradient,

�
�1 1

⇥
, the respective second deriva-

tive operator of order n is recovered. Using the flux operator,
we compute the 4 fluxes due to the fine grid and subtract it
from the coarse flux through the same surface element. This
flux di�erence is normalized and subtracted from the ghost
zone values so that the sum of the fine fluxes now matches the
coarse flux. This flux-correction is necessary since the adaptive
sub-grid induces artificial source terms through the ghost zone
interpolation and the multi-grid algorithm does not converge
(in the sense that the residual does not vanish). Using this
procedure we maintain multi-grid convergence (i.e. the resid-
ual reduces by at least an order of magnitude per iteration)
also with adaptive sub-grids.

Note that our approach to use an adaptive Poisson solver
is in similar spirit as Salmon (1996) who used a tree to com-
pute displacements and velocities, or Jenkins (2010) who also
used a tree to compute the second order term for 2LPT. The
advantage of the multi-grid method is however that it has a
well controlled residual to the equation to be solved so that
errors are easily controllable by setting the convergence cri-
terium in terms of the residual norm rather than by tuning
opening angles for the tree. Using a tree has the further dis-
advantage that periodic boundary conditions have to be incor-
porated in a hybrid way (e.g. by using FFT for the top grid).
This leads to an additional source of errors arising from the
long-range/short-range split.

3.4 Fourier analysis of the finite di�erence
operators

Operating in real space requires the use of a finite di�er-
ence approximation to the Laplacian and gradient operators.
In Table 1, we give the standard stencil representations for
the one dimensional versions of these operators. The three-
dimensional versions can be obtained by subsequent convolu-
tion of the one-dimensional operators along all three Cartesian
coordinate axes. In the bottom half, the Fourier transforms of
the operators are given together with the exact Fourier trans-
form of the continuous operators. Since a regularly spaced
mesh is a Dirac comb, due to symmetry reasons, the Fourier
transform of these operators takes the form of a cosine series,
in the case of the Laplacian, and of a sine series, in the case of
the Gradient. These series are approximations to the respec-
tive continuous and non-periodic transforms of the operators.
At low order, the relatively poor approximation leads to an
attenuation at large wave numbers. We will investigate the in-
fluence of this attenuation on cosmological initial conditions
in what follows. We analyze non-adaptive unigrid initial con-
ditions in this section, in order to di�erentiate these e�ects
from those due to adaptive initial conditions, which will be
addressed in Section 4.3.

3.4.1 Damping of small-scale perturbations

In Zel’dovich approximation, the displacement and velocity
fields are proportional to the gradient of the potential (cf. eq.
12). In this section, we investigate how the order of the finite
di�erence approximation for the Laplacian and the gradient
a�ects perturbations close to the Nyquist wave number kNy =
�/h, where h is the grid spacing which we set equal to one in
this section for mathematical convenience.
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Figure 4. Wavenumber dependent attenuation of perturbation am-
plitudes due to the finite di�erence approximations of the Laplacian
and gradient operators. Shown is the relative attenuation with re-
spect to the exact solution for 2nd (dotted), 4th (dashed) and 6th or-
der (dash-dotted) approximations in one dimension. The wavenum-
ber is in units of the Nyquist wave number kNy.

We define v as the gradient of the potential arising from
a source field f . The potential is solved using the multi-grid
scheme outlined above, and the gradient operator is applied
subsequently. The exact solution v in k-space is given by ⇤v,
where the tilde represents the Fourier transform. Expressed
by the Fourier transforms of the operators, this is simply:

⇤v =
⇤G
⇤L

⇤f =
i
k
⇤f, (24)

where the last equality holds for the exact solution. We define
the attenuation as the ratio between the one-dimensional finite
di�erence solution – using approximations of a given order for
L and G and taking their Fourier transform as in Table 1 –
and the exact solution ⇤v in k-space.

In Figure 4, we show the attenuation as a function of
wavenumber k that is to be expected from the finite di�erence
approximations to the operators up to sixth order. All finite
di�erence gradients have zero amplitude at kNy so that fluctu-
ations at this scale can not be represented in principle. A 2nd
order approximation leads to significant attenuation of ⇥ 78
per cent at kNy/2. However, for 6th order, attenuation is at
the level of a few per cent at kNy/2. We thus expect a suppres-
sion of the power spectrum at large k depending on the order
of the finite di�erence operators employed. Note that kNy/2
corresponds to scales of two grid cells and that the attenuation
enters squared into the power spectrum.

3.5 Recovering small-scale power

Both the use of a non-oscillatory transfer function and finite
di�erence methods lead to a loss of power at scales close to
the Nyquist wavenumber. We outline methods to solve this
problem in what follows. Most of these methods will lead to
oscillatory behaviour (cf. 3.5.5) which poses no problem in the
case of dark matter particle initial conditions but should be
avoided for baryons.

3.5.1 Finite Volume Correction

As demonstrated in Section 3.3, the multi-grid method is a
finite volume approach. The solution is determined by com-
puting flux balances across grid faces. This implies that the
source field f is simply a cell average. Hence, implicitly, every
discrete value TD(x) is a piecewise constant approximation to
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TR(x) which is incorrect in the particle case. The piecewise
constant averaging is given in terms of a kernel convolution

�WN,grid(xi) = Ws(x) ⌅ �cont.(x). (25)

In order to restore the small-scale fluctuation amplitudes,
it however su⌅ces to perform a deconvolution with the cell
assignment function – equivalent to nearest grid point (NGP)
assignment, see e.g. Hockney & Eastwood (1981),

Ws(x) =
⌥

i=1...3

H

�
xi +

h
2

⇥ ⇤
1�H

�
xi �

h
2

⇥⌅
, (26)

where H is the Heaviside step-function and h is the grid spac-
ing. Since H has an algebraic form for its Fourier transform

 Ws(k) =
⌥

i=1...3

2
ki

sin

�
h
2
ki

⇥
, (27)

we can perform this deconvolution in the Fourier domain and
thus recover some of the sub-grid power – see also Jing (2005)
who use a similar procedure for power spectrum estimation.
Note that – by virtue of restoring sub-grid power – the decon-
volution introduces weak ringing in real space along the coor-
dinate axes. This aliasing induced ringing will be completely
filtered out by subsequent finite di�erence operations.

3.5.2 A hybrid Poisson solver

The attenuation of subgrid power due to the finite di�erence
operators themselves (which however comes at the benefit of
a non-oscillatory velocity field) may be considered undesir-
able as part of the velocity information is e�ectively destroyed
by the finite di�erence approximation. Since the lack of small
scale power is only relevant on the finest grid, a simple so-
lution to circumvent this problem can be devised. Since we
know the Fourier transforms of the finite di�erence operators,
we can simply replace the fine grid solution by that which is
correct in k-space. Setting the right-hand side f(x) ⇥ 0 on
the boundary, we can recompute the self-gravity due to the
fine grid and replace it with the one obtained with the ex-
act k-space method, i.e. using a grid zero-padded to double
resolution, we compute the correction

�v⇥j(k) =
⇧
i
kj
k2

�
G(n)

j

L(n)

⌃
�f(k), (28)

where n is the order of the finite di�erence approximation em-
ployed and j is the direction along which the gradient is taken.
The result is inverse transformed and added to the solution ob-
tained with the finite di�erence method. The long-range part
is still provided by the adaptive multi-grid solution, which is
correct on scales larger than two grid cells. Thus, by defini-
tion, small scale power is recovered, while the long-range part
remains una�ected. Note that for the hybrid solver, the finite
volume correction from Section 3.5.1 should not be applied
since the k-space solver is not a finite volume method. Instead,
the method outlined in Section 3.5.3 should be employed.

3.5.3 Averaging correction

Even with the hybrid approach, a simple grid assignment of
the real-space transfer function, determined as in Section 2.2.1,
will lead to damping at small scales since unlike in the k-space
transfer function case, no sub-grid information is present. We
can however restore this subgrid power also for the hybrid
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Figure 5. Influence of the real space transfer function, the finite
di�erence approximations of the Laplacian and gradient operators
and the sub-grid corrections on the initial power spectrum. Shown
is the FFT estimated power spectrum (using CIC particle inter-
polation on a 10243 grid for the 5123 particles in a 100h�1Mpc
box) for the classical exact k-space initial conditions (solid black),
uncorrected real-space, 6th order (dash-dot-dot) and the corrected
version thereof (dash-dot), as well as the uncorrected hybrid (dot-
ted) and the corrected hybrid (dashed). The solid gray line indicates
the theoretical input spectrum.

case which itself corrects only the attenuation due to finite
di�erence operators.

We can compute each value TR(x) from an average over
sub-grid scales of the highest level  (imagined on the next
higher refinement level  +1 of the mesh). The value on level  is
then an average over 8 cells at twice the resolution, equivalent
to a convolution with the sub-grid kernel

Ksg(x) =
⌥

i=1...3

1
2

⇤
�D

�
xi +

h
4

⇥
+ �D

�
xi �

h
4

⇥⌅
, (29)

where �D is the Dirac �-function and h is the grid spacing.
The discretized transfer function TD(rijk) is thus given by av-
eraging over the true transfer function TR at sub-grid scales
TD(rijk) = TR ⌅ Ksg. The kernel Ksg can be explicitly calcu-
lated in Fourier space to be

�Ksg(k) =
⌥

i

cos

�
h ki
4

⇥
, (30)

where the tilde denotes a Fourier transform. Power is thus re-
duced at large k compared to higher resolution. Deconvolving
with �Ksg will restore this power. The average over sub-grid
cells is taken while computing the real space transfer function
kernel on the three dimensional grid.

3.5.4 E�ect of the corrections on the initial power spectrum

In Figure 5, we show the influence of the finite di�erence order
on the initial power spectrum compared to traditional initial
conditions using the k-space transfer function and a Fourier
based Poisson solver. All initial conditions are for a 5123 par-
ticle discretisation of a 100h�1Mpc box. The power spectrum
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Figure 18. Cumuhaltive histogram of sub-halo maximum circular
velocities vmax of the re-simulated cluster at z = 0. The top panel
shows the result for finite di�erence multi-grid approach, the lower
the corresponding results for the hybrid approach.

thus does not su⇤er from aliasing. An analysis of the influ-
ence of aliasing on baryons is however beyond the scope of
this paper.

5.2 Local Lagrangian approximation for the baryon
density field

The density field sourcing the displacements and velocities in
Lagrangian perturbation theory – which is a Gaussian random
field – is inconsistent with the density field of the displaced
particles – which is non-Gaussian. In this section, we describe
an approach to prescribe initial gas density for the mesh cells
based on the local Lagrangian approximation (LLA) that leads
to excellent agreement between the initial gas and dark mat-
ter density fields (see also Betancort-Rijo 1991; Padmanabhan
& Subramanian 1993; Protogeros & Scherrer 1997). Further-
more, it provides a natural way to prescribe the initial gas
density on a grid for 2LPT initial conditions.

The continuity equation is trivially fulfilled for a La-
grangian description of the fluid and simply reads dm = const.
We can however express the continuity equation in terms of
the evolving fluid coordinates x. It then becomes

⇥(x, t) d3x = ⇥̄ d3q, (32)

where ⇥̄ is the unperturbed mean density, ⇥(x, t) is the density
of the fluid element. Since the continuity equation is simply a
volume integral, we can employ the change of variables the-
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Figure 19. Gas and dark matter overdensity probability distribu-
tions for initial condtions generated using first order Lagrangian
perturbation theory at redshifts z = 50 (top) and z = 20 (bottom)
using identical powerspectra for dark matter and gas perturbations.
The baryon densities have been assigned using the new LPT scheme
(red) and the Eulerian scheme (black), dark matter densities were
obtained using CIC (green) and TSC (blue) interpolation onto a
grid.

orem to express the left-hand-side also in terms of the initial
position q,

⇥(q, t)

����
⌃x
⌃q

���� d
3q = ⇥̄ d3q. (33)

Then, using eq. (11), the formal evolution of the density at
the initial position of the fluid elements can be simply written
as

⇥(q, t) =
⇥̄

det
⇥
�ij +

�Li
�qj

⇤ , (34)

where �ij is the unity matrix. This implies that ⇥(q, t) assumes
a non-Gaussian distribution in general. In fact, ⇥(q, t) will be-
come singular whenever an eigenvalue of ⌃Li/⌃qj will become
�1, corresponding to shell crossing along the respective axis.
Since we use the first or second order Lagrangian perturba-
tion theory approximation for the displacement field L(q, t),
eq. (34) is not exact and amounts to a “local Lagrangian ap-
proximation”. This means that, in general, mass will not be
strictly conserved. We correct this by enforcing mass conser-
vation by an a posteriori renormalization ⇥ ⇥ ⇥ + ⇥̃, where
⇥̃ is the measured deviation from mean density. Typically, for
su⌃ciently high initial redshift (as e.g. for the z = 45 initial
conditions discussed below), the relative error is below 2 per
cent and poses no problem.

When computing L(q, t) for baryons, we assume that �
is sourced only by the baryon density perturbations, and so
also ⇥ contains only baryonic contributions. This is justified
since otherwise ⇥ does not agree with the baryon density per-
turbations.

To emphasize, Eulerian perturbation theory strongly
overpredicts and the abundance of underdense regions (i.e. the
voids are too empty) while it underpredicts the abundance of
overdense regions. When using the Lagrangian perturbations
for the baryons, this skewed behaviour is reproduced, which is
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Figure 18. Cumuhaltive histogram of sub-halo maximum circular
velocities vmax of the re-simulated cluster at z = 0. The top panel
shows the result for finite di�erence multi-grid approach, the lower
the corresponding results for the hybrid approach.

thus does not su⇤er from aliasing. An analysis of the influ-
ence of aliasing on baryons is however beyond the scope of
this paper.

5.2 Local Lagrangian approximation for the baryon
density field

The density field sourcing the displacements and velocities in
Lagrangian perturbation theory – which is a Gaussian random
field – is inconsistent with the density field of the displaced
particles – which is non-Gaussian. In this section, we describe
an approach to prescribe initial gas density for the mesh cells
based on the local Lagrangian approximation (LLA) that leads
to excellent agreement between the initial gas and dark mat-
ter density fields (see also Betancort-Rijo 1991; Padmanabhan
& Subramanian 1993; Protogeros & Scherrer 1997). Further-
more, it provides a natural way to prescribe the initial gas
density on a grid for 2LPT initial conditions.

The continuity equation is trivially fulfilled for a La-
grangian description of the fluid and simply reads dm = const.
We can however express the continuity equation in terms of
the evolving fluid coordinates x. It then becomes

⇥(x, t) d3x = ⇥̄ d3q, (32)

where ⇥̄ is the unperturbed mean density, ⇥(x, t) is the density
of the fluid element. Since the continuity equation is simply a
volume integral, we can employ the change of variables the-
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Figure 19. Gas and dark matter overdensity probability distribu-
tions for initial condtions generated using first order Lagrangian
perturbation theory at redshifts z = 50 (top) and z = 20 (bottom)
using identical powerspectra for dark matter and gas perturbations.
The baryon densities have been assigned using the new LPT scheme
(red) and the Eulerian scheme (black), dark matter densities were
obtained using CIC (green) and TSC (blue) interpolation onto a
grid.

orem to express the left-hand-side also in terms of the initial
position q,

⇥(q, t)

����
⌃x
⌃q

���� d
3q = ⇥̄ d3q. (33)

Then, using eq. (11), the formal evolution of the density at
the initial position of the fluid elements can be simply written
as

⇥(q, t) =
⇥̄

det
⇥
�ij +

�Li
�qj

⇤ , (34)

where �ij is the unity matrix. This implies that ⇥(q, t) assumes
a non-Gaussian distribution in general. In fact, ⇥(q, t) will be-
come singular whenever an eigenvalue of ⌃Li/⌃qj will become
�1, corresponding to shell crossing along the respective axis.
Since we use the first or second order Lagrangian perturba-
tion theory approximation for the displacement field L(q, t),
eq. (34) is not exact and amounts to a “local Lagrangian ap-
proximation”. This means that, in general, mass will not be
strictly conserved. We correct this by enforcing mass conser-
vation by an a posteriori renormalization ⇥ ⇥ ⇥ + ⇥̃, where
⇥̃ is the measured deviation from mean density. Typically, for
su⌃ciently high initial redshift (as e.g. for the z = 45 initial
conditions discussed below), the relative error is below 2 per
cent and poses no problem.

When computing L(q, t) for baryons, we assume that �
is sourced only by the baryon density perturbations, and so
also ⇥ contains only baryonic contributions. This is justified
since otherwise ⇥ does not agree with the baryon density per-
turbations.

To emphasize, Eulerian perturbation theory strongly
overpredicts and the abundance of underdense regions (i.e. the
voids are too empty) while it underpredicts the abundance of
overdense regions. When using the Lagrangian perturbations
for the baryons, this skewed behaviour is reproduced, which is
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Figure 18. Cumuhaltive histogram of sub-halo maximum circular
velocities vmax of the re-simulated cluster at z = 0. The top panel
shows the result for finite di�erence multi-grid approach, the lower
the corresponding results for the hybrid approach.

thus does not su⇤er from aliasing. An analysis of the influ-
ence of aliasing on baryons is however beyond the scope of
this paper.

5.2 Local Lagrangian approximation for the baryon
density field

The density field sourcing the displacements and velocities in
Lagrangian perturbation theory – which is a Gaussian random
field – is inconsistent with the density field of the displaced
particles – which is non-Gaussian. In this section, we describe
an approach to prescribe initial gas density for the mesh cells
based on the local Lagrangian approximation (LLA) that leads
to excellent agreement between the initial gas and dark mat-
ter density fields (see also Betancort-Rijo 1991; Padmanabhan
& Subramanian 1993; Protogeros & Scherrer 1997). Further-
more, it provides a natural way to prescribe the initial gas
density on a grid for 2LPT initial conditions.

The continuity equation is trivially fulfilled for a La-
grangian description of the fluid and simply reads dm = const.
We can however express the continuity equation in terms of
the evolving fluid coordinates x. It then becomes

⇥(x, t) d3x = ⇥̄ d3q, (32)

where ⇥̄ is the unperturbed mean density, ⇥(x, t) is the density
of the fluid element. Since the continuity equation is simply a
volume integral, we can employ the change of variables the-
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Figure 19. Gas and dark matter overdensity probability distribu-
tions for initial condtions generated using first order Lagrangian
perturbation theory at redshifts z = 50 (top) and z = 20 (bottom)
using identical powerspectra for dark matter and gas perturbations.
The baryon densities have been assigned using the new LPT scheme
(red) and the Eulerian scheme (black), dark matter densities were
obtained using CIC (green) and TSC (blue) interpolation onto a
grid.

orem to express the left-hand-side also in terms of the initial
position q,

⇥(q, t)
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⌃x
⌃q

���� d
3q = ⇥̄ d3q. (33)

Then, using eq. (11), the formal evolution of the density at
the initial position of the fluid elements can be simply written
as

⇥(q, t) =
⇥̄

det
⇥
�ij +

�Li
�qj

⇤ , (34)

where �ij is the unity matrix. This implies that ⇥(q, t) assumes
a non-Gaussian distribution in general. In fact, ⇥(q, t) will be-
come singular whenever an eigenvalue of ⌃Li/⌃qj will become
�1, corresponding to shell crossing along the respective axis.
Since we use the first or second order Lagrangian perturba-
tion theory approximation for the displacement field L(q, t),
eq. (34) is not exact and amounts to a “local Lagrangian ap-
proximation”. This means that, in general, mass will not be
strictly conserved. We correct this by enforcing mass conser-
vation by an a posteriori renormalization ⇥ ⇥ ⇥ + ⇥̃, where
⇥̃ is the measured deviation from mean density. Typically, for
su⌃ciently high initial redshift (as e.g. for the z = 45 initial
conditions discussed below), the relative error is below 2 per
cent and poses no problem.

When computing L(q, t) for baryons, we assume that �
is sourced only by the baryon density perturbations, and so
also ⇥ contains only baryonic contributions. This is justified
since otherwise ⇥ does not agree with the baryon density per-
turbations.

To emphasize, Eulerian perturbation theory strongly
overpredicts and the abundance of underdense regions (i.e. the
voids are too empty) while it underpredicts the abundance of
overdense regions. When using the Lagrangian perturbations
for the baryons, this skewed behaviour is reproduced, which is
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els is to mainly introduce slight errors in the mean sub-grid
density. This introduces a linear error in the velocities which
amounts to a weak spurious shear component across the fine
grid. Otherwise, errors are completely localized at the coarse-
fine boundaries.

4.4 Errors in nested initial conditions:
Re-simulation of a galaxy cluster halo

In order to assess the influence of multi-scale initial conditions
on the formation of a re-simulated object, we generate multi-
scale initial conditions for one of the most massive clusters
with mass 2� 1014 h�1Mpc in the 100h�1Mpc box discussed
before. We deliberately set the rectangular refinement region
to include only the Lagrangian patch of the cluster halo. This
will maximize the influence of both the coarse sampling of the
large-scale tidal field and boundary e�ects on the formation of
the cluster halo and allow us to estimate these e�ects. The re-
finement volume is a rectangular region of 23�21�21h�3Mpc3

and was determined by following the FoF particles consti-
tuting the halo at z = 0 back to the initial conditions and
determining their bounding box rounded up/down to integer
h�1 Mpc. Note that a sphere at mean density containing the
mass of the cluster would have a diameter of ⇥ 17.5h�1Mpc.

We perform Gadget-2 simulations with one level of re-
finement where the e�ective resolution in the zoom region is
5123 and 2563 in the remainder of the box, as well as with two
levels of refinement, where the high resolution region is sur-
rounded by a layer of 16 particles thickness around each face at
2563 e�ective resolution that then drops to 1283 in the remain-
der of the box. In addition, we perform each simulation twice
times for both the multigrid finite-di�erence and the hybrid
approach: once with the initial density field determined using
the multi-scale convolution technique described in Section 2.3,
and once with the density field determined at full resolution
and then degraded (by averaging) to the same resolution as in
the multi-scale setup followed by solving Poisson’s equation on
the nested grid rather than the full grid. The latter produces
completely negligible errors in the velocities and displacements
inside the high resolution region. Di�erences from the full-grid
initial velocities occur only in 2-3 cells at the boundary where
the fields transition smoothly from fine to coarse resolution.
All simulations are run with Gadget-2 and use a force soft-
ening length of 0.009h�1Mpc for the high-resolution particles
and 0.09h�1Mpc for the other particles.

In Figure 16, we show the clusters at z = 0 for all combi-
nations of refinement set-up, Poisson solver and initial density
generation method. We observe that the main halo as well as
the most massive subhalos are consistent in position and size.
The positions of some of the smaller halos are shifted and some
smaller haloes seem to have merged in one set-up while they
have no in some of the other. In general, visual di�erences
are minimal. It is furthermore surprising that no systematic
di�erence between the 1-level and the 2-level set-up can be
seen. This is most likely a result of the padding region in the
2-level simulations at 2563 resolution which is identical to the
1-level simulations - the tidal influence of structures outside
the padding region thus appears negligible and highlights the
importance of adding padding.

Comparing Figure 16 with Figure 11, which shows the
cluster in the unigrid simulations, we observe no obvious sys-
tematic di�erences apart from smaller sub-halo positions be-
ing slightly shifted. The overall shape of the cluster halo agrees
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Figure 17. Overdensity profiles for the cluster at z = 0 re-
simulated with one and two refinement levels (top). The lower panel
shows the relative di�erence with respect to the profile of the clus-
ter in the unigrid simulation. Left panels show the result obtained
with finite di�erence multi-grid, the right panels correspond to the
hybrid approach.

very well between the re-simulations and the full box simula-
tions.

We ran the Amiga halo finder (AHF) (Knollmann &
Knebe 2009) on the resimulated clusters and quote the same
key values as in Section 4.2 to quantify the gross properties of
the cluster halo in Table 4. As in the unigrid case, apart from
Rmax, we find di�erences around 1 per cent or below for all
quantities investigated.

In Figure 17, we show the radial over-density profiles for
the various cases. The lower panel show the relative di�erence
with respect to the unigrid simulations. We observe no bias in
either case. Scatter around the unigrid profile is larger for the
finite di�erence case than for the hybrid initial conditions. For
both methods, the scatter is slightly larger for the 2-level than
for the 1-level set-up. Note that all “zoom” density profiles fall
below the unigrid profiles in the last bin. This is due to the
too small size of our refinement region as it is also present in
the simulations generated by degrading the full density field.
Despite the fact that it had been chosen too small, we find
however not a single low resolution particle inside the virial
radius, the first appearing at ⇥ 1.3Rvir.

Finally, in Figure 18, we show the abundances of substruc-
ture as a function of maximum circular velocity vmax within
the virial radius of the cluster for all of the re-simulations. Dif-
ferences between the 1 and 2-level results are at the level of
several per cent for the finite di�erence case. The hybrid ini-
tial conditions show better agreement between the four runs.
It is hard and beyond the scope of this paper to investigate to
what degree these di�erences stem from simple changes of the
sub-halo positions causing errors in determining their circular
velocities (or masses) in the sub-halo finder.

We observe that the errors due to our multi-scale method,
particularly with the hybrid Poisson solver, agree very well
with the degraded initial conditions in both the one and two
refinement level set-up. In particular, the scatter between the
results from multi-scale density fields and degraded density
fields is never larger than the di�erence between degraded ini-
tial conditions at one or two refinement levels itself. This leads
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els is to mainly introduce slight errors in the mean sub-grid
density. This introduces a linear error in the velocities which
amounts to a weak spurious shear component across the fine
grid. Otherwise, errors are completely localized at the coarse-
fine boundaries.

4.4 Errors in nested initial conditions:
Re-simulation of a galaxy cluster halo

In order to assess the influence of multi-scale initial conditions
on the formation of a re-simulated object, we generate multi-
scale initial conditions for one of the most massive clusters
with mass 2� 1014 h�1Mpc in the 100h�1Mpc box discussed
before. We deliberately set the rectangular refinement region
to include only the Lagrangian patch of the cluster halo. This
will maximize the influence of both the coarse sampling of the
large-scale tidal field and boundary e�ects on the formation of
the cluster halo and allow us to estimate these e�ects. The re-
finement volume is a rectangular region of 23�21�21h�3Mpc3

and was determined by following the FoF particles consti-
tuting the halo at z = 0 back to the initial conditions and
determining their bounding box rounded up/down to integer
h�1 Mpc. Note that a sphere at mean density containing the
mass of the cluster would have a diameter of ⇥ 17.5h�1Mpc.

We perform Gadget-2 simulations with one level of re-
finement where the e�ective resolution in the zoom region is
5123 and 2563 in the remainder of the box, as well as with two
levels of refinement, where the high resolution region is sur-
rounded by a layer of 16 particles thickness around each face at
2563 e�ective resolution that then drops to 1283 in the remain-
der of the box. In addition, we perform each simulation twice
times for both the multigrid finite-di�erence and the hybrid
approach: once with the initial density field determined using
the multi-scale convolution technique described in Section 2.3,
and once with the density field determined at full resolution
and then degraded (by averaging) to the same resolution as in
the multi-scale setup followed by solving Poisson’s equation on
the nested grid rather than the full grid. The latter produces
completely negligible errors in the velocities and displacements
inside the high resolution region. Di�erences from the full-grid
initial velocities occur only in 2-3 cells at the boundary where
the fields transition smoothly from fine to coarse resolution.
All simulations are run with Gadget-2 and use a force soft-
ening length of 0.009h�1Mpc for the high-resolution particles
and 0.09h�1Mpc for the other particles.

In Figure 16, we show the clusters at z = 0 for all combi-
nations of refinement set-up, Poisson solver and initial density
generation method. We observe that the main halo as well as
the most massive subhalos are consistent in position and size.
The positions of some of the smaller halos are shifted and some
smaller haloes seem to have merged in one set-up while they
have no in some of the other. In general, visual di�erences
are minimal. It is furthermore surprising that no systematic
di�erence between the 1-level and the 2-level set-up can be
seen. This is most likely a result of the padding region in the
2-level simulations at 2563 resolution which is identical to the
1-level simulations - the tidal influence of structures outside
the padding region thus appears negligible and highlights the
importance of adding padding.

Comparing Figure 16 with Figure 11, which shows the
cluster in the unigrid simulations, we observe no obvious sys-
tematic di�erences apart from smaller sub-halo positions be-
ing slightly shifted. The overall shape of the cluster halo agrees
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Figure 17. Overdensity profiles for the cluster at z = 0 re-
simulated with one and two refinement levels (top). The lower panel
shows the relative di�erence with respect to the profile of the clus-
ter in the unigrid simulation. Left panels show the result obtained
with finite di�erence multi-grid, the right panels correspond to the
hybrid approach.

very well between the re-simulations and the full box simula-
tions.

We ran the Amiga halo finder (AHF) (Knollmann &
Knebe 2009) on the resimulated clusters and quote the same
key values as in Section 4.2 to quantify the gross properties of
the cluster halo in Table 4. As in the unigrid case, apart from
Rmax, we find di�erences around 1 per cent or below for all
quantities investigated.

In Figure 17, we show the radial over-density profiles for
the various cases. The lower panel show the relative di�erence
with respect to the unigrid simulations. We observe no bias in
either case. Scatter around the unigrid profile is larger for the
finite di�erence case than for the hybrid initial conditions. For
both methods, the scatter is slightly larger for the 2-level than
for the 1-level set-up. Note that all “zoom” density profiles fall
below the unigrid profiles in the last bin. This is due to the
too small size of our refinement region as it is also present in
the simulations generated by degrading the full density field.
Despite the fact that it had been chosen too small, we find
however not a single low resolution particle inside the virial
radius, the first appearing at ⇥ 1.3Rvir.

Finally, in Figure 18, we show the abundances of substruc-
ture as a function of maximum circular velocity vmax within
the virial radius of the cluster for all of the re-simulations. Dif-
ferences between the 1 and 2-level results are at the level of
several per cent for the finite di�erence case. The hybrid ini-
tial conditions show better agreement between the four runs.
It is hard and beyond the scope of this paper to investigate to
what degree these di�erences stem from simple changes of the
sub-halo positions causing errors in determining their circular
velocities (or masses) in the sub-halo finder.

We observe that the errors due to our multi-scale method,
particularly with the hybrid Poisson solver, agree very well
with the degraded initial conditions in both the one and two
refinement level set-up. In particular, the scatter between the
results from multi-scale density fields and degraded density
fields is never larger than the di�erence between degraded ini-
tial conditions at one or two refinement levels itself. This leads
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els is to mainly introduce slight errors in the mean sub-grid
density. This introduces a linear error in the velocities which
amounts to a weak spurious shear component across the fine
grid. Otherwise, errors are completely localized at the coarse-
fine boundaries.

4.4 Errors in nested initial conditions:
Re-simulation of a galaxy cluster halo

In order to assess the influence of multi-scale initial conditions
on the formation of a re-simulated object, we generate multi-
scale initial conditions for one of the most massive clusters
with mass 2� 1014 h�1Mpc in the 100h�1Mpc box discussed
before. We deliberately set the rectangular refinement region
to include only the Lagrangian patch of the cluster halo. This
will maximize the influence of both the coarse sampling of the
large-scale tidal field and boundary e�ects on the formation of
the cluster halo and allow us to estimate these e�ects. The re-
finement volume is a rectangular region of 23�21�21h�3Mpc3

and was determined by following the FoF particles consti-
tuting the halo at z = 0 back to the initial conditions and
determining their bounding box rounded up/down to integer
h�1 Mpc. Note that a sphere at mean density containing the
mass of the cluster would have a diameter of ⇥ 17.5h�1Mpc.

We perform Gadget-2 simulations with one level of re-
finement where the e�ective resolution in the zoom region is
5123 and 2563 in the remainder of the box, as well as with two
levels of refinement, where the high resolution region is sur-
rounded by a layer of 16 particles thickness around each face at
2563 e�ective resolution that then drops to 1283 in the remain-
der of the box. In addition, we perform each simulation twice
times for both the multigrid finite-di�erence and the hybrid
approach: once with the initial density field determined using
the multi-scale convolution technique described in Section 2.3,
and once with the density field determined at full resolution
and then degraded (by averaging) to the same resolution as in
the multi-scale setup followed by solving Poisson’s equation on
the nested grid rather than the full grid. The latter produces
completely negligible errors in the velocities and displacements
inside the high resolution region. Di�erences from the full-grid
initial velocities occur only in 2-3 cells at the boundary where
the fields transition smoothly from fine to coarse resolution.
All simulations are run with Gadget-2 and use a force soft-
ening length of 0.009h�1Mpc for the high-resolution particles
and 0.09h�1Mpc for the other particles.

In Figure 16, we show the clusters at z = 0 for all combi-
nations of refinement set-up, Poisson solver and initial density
generation method. We observe that the main halo as well as
the most massive subhalos are consistent in position and size.
The positions of some of the smaller halos are shifted and some
smaller haloes seem to have merged in one set-up while they
have no in some of the other. In general, visual di�erences
are minimal. It is furthermore surprising that no systematic
di�erence between the 1-level and the 2-level set-up can be
seen. This is most likely a result of the padding region in the
2-level simulations at 2563 resolution which is identical to the
1-level simulations - the tidal influence of structures outside
the padding region thus appears negligible and highlights the
importance of adding padding.

Comparing Figure 16 with Figure 11, which shows the
cluster in the unigrid simulations, we observe no obvious sys-
tematic di�erences apart from smaller sub-halo positions be-
ing slightly shifted. The overall shape of the cluster halo agrees
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Figure 17. Overdensity profiles for the cluster at z = 0 re-
simulated with one and two refinement levels (top). The lower panel
shows the relative di�erence with respect to the profile of the clus-
ter in the unigrid simulation. Left panels show the result obtained
with finite di�erence multi-grid, the right panels correspond to the
hybrid approach.

very well between the re-simulations and the full box simula-
tions.

We ran the Amiga halo finder (AHF) (Knollmann &
Knebe 2009) on the resimulated clusters and quote the same
key values as in Section 4.2 to quantify the gross properties of
the cluster halo in Table 4. As in the unigrid case, apart from
Rmax, we find di�erences around 1 per cent or below for all
quantities investigated.

In Figure 17, we show the radial over-density profiles for
the various cases. The lower panel show the relative di�erence
with respect to the unigrid simulations. We observe no bias in
either case. Scatter around the unigrid profile is larger for the
finite di�erence case than for the hybrid initial conditions. For
both methods, the scatter is slightly larger for the 2-level than
for the 1-level set-up. Note that all “zoom” density profiles fall
below the unigrid profiles in the last bin. This is due to the
too small size of our refinement region as it is also present in
the simulations generated by degrading the full density field.
Despite the fact that it had been chosen too small, we find
however not a single low resolution particle inside the virial
radius, the first appearing at ⇥ 1.3Rvir.

Finally, in Figure 18, we show the abundances of substruc-
ture as a function of maximum circular velocity vmax within
the virial radius of the cluster for all of the re-simulations. Dif-
ferences between the 1 and 2-level results are at the level of
several per cent for the finite di�erence case. The hybrid ini-
tial conditions show better agreement between the four runs.
It is hard and beyond the scope of this paper to investigate to
what degree these di�erences stem from simple changes of the
sub-halo positions causing errors in determining their circular
velocities (or masses) in the sub-halo finder.

We observe that the errors due to our multi-scale method,
particularly with the hybrid Poisson solver, agree very well
with the degraded initial conditions in both the one and two
refinement level set-up. In particular, the scatter between the
results from multi-scale density fields and degraded density
fields is never larger than the di�erence between degraded ini-
tial conditions at one or two refinement levels itself. This leads
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Mvir / h�1M⇥ Rvir / h�1kpc Vmax / km s�1 Rmax / h�1kpc � ⇥v / km s�1 c/a

6th order finite di�erence

1 level, degraded 2.136� 1014 1230.4 939.5 646.5 0.02543 998.5 0.7168
1 level, multi-scale 2.137� 1014 1230.6 941.4 667.7 0.02545 999.3 0.7168
2 level, degraded 2.138� 1014 1230.9 938.5 652.3 0.02552 997.4 0.7141
2 level, multi-scale 2.137� 1014 1230.6 939.8 612.8 0.02550 998.3 0.7171

hybrid Poisson solver

1 level, degraded 2.135� 1014 1230.3 942.4 667.9 0.02525 1000.7 0.7142
1 level, multi-scale 2.134� 1014 1230.1 941.4 649.8 0.02530 999.9 0.7136
2 level, degraded 2.134� 1014 1230.0 940.2 665.1 0.02532 998.4 0.7130
2 level, multi-scale 2.134� 1014 1230.0 941.8 669.6 0.02534 999.5 0.7145

Table 4. Properties of the cluster halo when resimulated with one or two levels of coarse resolution particles outside the high-resolution
region. The ‘degraded’ runs started from initial conditions that were computed at the full resolution of the high-resolution region, while the
‘multi-scale’ runs use the adaptive zooming technique.
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Figure 18. Overdensity profiles for the cluster at z = 0 re-
simulated with one and two refinement levels (top). The lower panel
shows the relative di�erence with respect to the profile of the clus-
ter in the unigrid simulation. Left panels show the result obtained
from finite di�erence multi-grid initial conditions, the right panels
correspond to the hybrid approach.
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Figure 19. Cumuhaltive histogram of sub-halo maximum circular
velocities vmax of the re-simulated cluster at z = 0. The left panel
shows the result for finite di�erence multi-grid approach, the right
panel the corresponding results for the hybrid approach.
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Figure 20. Radial density profiles of the re-simulated cluster haloes
at increasing resolution with a base grid of 1283 particles. The pro-
file for 1 refinement level, 2563 e�ective resolution is shown as a
dotted black line; 2 levels, 5123 e�ective resolution as a dashed
red line; and 3 levels, 10243 e�ective resolution, as a solid blue line.
The vertical light gray lines in the corresponding line styles indicate
three times the softening length for each simulation.

with the degraded initial conditions in both the one and two
refinement level set-up. In particular, the scatter between the
results from multi-scale density fields and degraded density
fields is never larger than the di�erence between degraded ini-
tial conditions at one or two refinement levels itself. This leads
us to conclude that the di�erences, apart from the introduction
of an additional stochastic component, are dominated by the
late-time evolution and not the initial conditions. In particu-
lar, we find no evidence that our method introduces systematic
di�erence or bias in any of the investigated quantities.

Finally, we investigate the convergence of the density pro-
file at even higher resolution for the hybrid Poisson solver case.
In Figure 20, we show the radial density profiles for a series
of re-simulations that all have a base resolution of 1283 parti-
cles and one to three additional refinement levels. The profiles
trace each other almost perfectly.

c⇥ 2010 RAS, MNRAS 000, 1–21
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Combining several codes is easy....

Gadget-2

1283 base resolution, 100 Mpc/h box

Gadget-2

3 levels = 5123 effective

Gadget-2

3 levels
+ adiabatic gas

RAMSES

ENZO

2 levels
+ adiabatic gas

Multiple codes supported by plugins, more can be easily added...
output for a different code? change one line!
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Rhapsody: sampling rare objects with zoom sims
2 WU ET AL.

focused only on a small number of systems (e.g., the
current high-resolution Phoenix simulation [Gao et al.
2012]), and somewhat more work has been done for galac-
tic halos (e.g., the Via Lactea II simulation [Diemand
et al. 2008] and the Aquarius simulations [Springel et al.
2008]). Therefore, few statements have been made about
the statistical properties of well-resolved substructures in
the mass regime of galaxy clusters.

In this work, we perform re-simulations of a large num-
ber of cluster-forming regions in a cosmological volume
(side length 1 h

�1Gpc) to create a high-resolution statis-
tical cluster sample, Rhapsody, which stands for “Re-
simulated HAlo Population for Statistical Observable–
mass Distribution studY”. The current sample includes
96 halos of mass 1014.8±0.05

h

�1M� with mass resolution
1.3 ⇥ 108h�1M�. One of the main goals of Rhapsody
is to create a sample of cluster-size halos that enables us
to make statistical statements about the halo population
that is relevant for current and imminent cluster surveys.

In Figure 1, we compare the halo sample of sev-
eral N-body simulations in the literature (Millennium
[Springel 2005]; Millenium XXL [Angulo et al. 2012];
Bolshoi [Klypin et al. 2011]; MultiDark [Prada et al.
2011]; Consuelo and Carmen [from LasDamas; McBride
et al. in preperation]; Phoenix [Gao et al. 2012]; Aquar-
ius [Springel et al. 2008]) to our Rhapsody 8K (main
sample) and Rhapsody 4K (a factor of 8 lower in mass
resolution). The cosmological volumes are presented by
curves, which indicate the halo population inside each
volume, while simulations of individual halos are pre-
sented by symbols. Rhapsody is in a unique regime in
terms of the number of halos simulated with high par-
ticle number. Our repeated implementation of the re-
simulation method makes the simulation suite statisti-
cally interesting and computationally feasible. Although
we are focused here on galaxy clusters, it is worth not-
ing that this is currently the largest sample of halos with
more than a few ⇥106 particles per halo at any given
mass in the literature.

The Rhapsody sample is highly relevant to sev-
eral current observational programs. For example, the
galaxy cluster catalogs from the SDSS (Koester et al.
2007; Hao et al. 2010) include several tens of thou-
sands of photometrically-selected clusters and have pro-
vided a rich sample for multi-wavelength mass calibra-
tion(Rozo et al. 2009; Ryko↵ et al. 2012), cosmological
constraints(?Rozo et al. 2010), and studies of the cluster
galaxy populations (e.g. Hansen et al. 2009). The Clus-
ter Lensing And Supernova survey with Hubble Multi-
Cycle Treasury Program (CLASH; Postman et al. 2011)
focuses on 25 massive clusters and aims to establish un-
biased measurements of cluster mass–concentration re-
lation of these clusters. von der Linden et al. (2012)
recently published accurate weak lensing mass calibra-
tion of 51 massive clusters, focusing on understanding
various systematics for cluster count experiments. In ad-
dition, various X-ray programs have been e�ciently iden-
tifying massive clusters; for example, the ROSAT Bright-
est Cluster Sample (Ebeling et al. 2000), ROSAT-ESO
Flux-Limited X-ray sample (Böhringer et al. 2004), and
the MAssive Cluster Survey (Ebeling et al. 2010). These
samples have achieved high completeness and provided
relatively unbiased selection. Relatively recently, mas-
sive galaxy clusters have also been detected through the
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Figure 1. Comparison of the halo samples in various N-body
simulations; Rhapsody is in a unique statistical regime of well-
resolved massive halos. The number of halos (per 0.1 dex in mass)
is shown as a function of number of particles inside the virial radius
of the halo. Symbols correspond to halos in re-simulation projects;
the Rhapsody 4K and 8K samples are shown as two colored stars
(M

vir

= 1014.8±0.05h�1M�). Curves correspond to halos in dif-
ferent cosmological volumes, and black stars on these curves cor-
respond to the number of halos of the same mass as Rhapsody.
We note that Consuelo and Carmen both include 50 volumes, and
only one volume is presented here.

Sunyaev–Zel’dovich (SZ) e↵ect by ACT (Marriage et al.
2011), SPT (Williamson et al. 2011), and Planck (Planck
Collaboration et al. 2011), which have ushered in an era
of high-purity detection of high-redshift galaxy clusters.
The Rhapsody sample is in a mass regime similar to
these observational programs and can provide a statisti-
cal description of the dark matter halos associated with
these clusters.

This paper presents the first results from the Rhap-
sody simulations. We first characterize the formation
history and the density profiles of the 96 main halos. We
then explore how formation history impacts halo concen-
tration and the deviation from the Navarro–Frenk–White
profile. In general, the NFW model cannot well describe
the slope of the density profile; for early-forming halos,
the logarithmic slope of profile follows a power law and is
close to the Einasto description. On the other hand, for
late-forming halos, substantial deviation from NFW and
Einasto exists, and the logarithmic slope represents bro-
ken power law, which we find is largely driven by massive
subhalos. We connect the density profile to the phase-
space structures of halos and find that late-forming halos
tend to have outflows within R

vir

. This outflow can also
be attributed to subhalos. We also investigated the shape
parameters for position and velocity. We find no strong
correlation with formation time, indicating that the de-
viation from spherical symmetry cannot account for the
trend of profile and formation time.

In a second paper in this series (Wu et al. 2012, here-
after, Paper II), we will present the subhalos in our sam-
ple and explore the impact of formation time on them.

Rhapsody Simulations of Massive Galaxy Clusters 5

Figure 2. Images of 90 Rhapsody halos at z = 0. The halos are first sorted by concentration (high concentration on the upper rows). In
each row, the halos are then sorted by the number of substructures (selected with v

0

> 100 km/s, high number of substructures on the left
columns). Each image has a physical extent of 4 h�1Mpc on a side, which is slightly larger than the average virial radius of 1.8 h�1Mpc.

Wu et al. 2012a/b, to be submitted
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Analyzing Rhapsody
A Web Interface

• Made with Javascript only, no PHP/SQL. Can run locally.
• All halo properties and correlation coefficients are pre-calculated 

and stored as ASCII files. 
• Scatter plots generated on the fly with Google Charts API.

Clicking on the 
correlation 
matrix brings 
you to the 
scatter plots.

Mark red points 
(halos) in a 
specified range.

Browse history 
and sharing key.

Each point represent one 
halo. Mouse hover to 
show the image of the 
halo. Click to mark halos 
in red.

Choose two halo properties to 
show a scatter plot.

[Implemented by Yao-Yuan Mao]

http://www.slac.stanford.edu/~yymao/1wl20OwIO92waae92m2/
http://www.slac.stanford.edu/~yymao/1wl20OwIO92waae92m2/
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MUSIC 101: the parameter file
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Current Feature List of MUSIC
• Publicly available now (ask me to get access). 

Full public access probably in September

• Supports 
Gadget, ENZO, RAMSES, Gasoline (ART in progress)

• Zeldovich approx or 2LPT for dark matter

• Local-lagrangian approx for baryons w/ grid codes

• can take input from CAMB, comes also with a Boltzmann code, or 
fitting formulae

• Experimental motion-compensation to reduce Galilean invariance 
errors with grid codes

• Universe encoded in parameter file, can pass around easily, increase 
resolution, enlarge region...

• C++ factory patterns for plugins for output, linear cosmology part


