The Dependence of Quenching upon Inner Galactic Structure

> Edmond Cheung Sandy Faber David Koo Aaron Dutton AEGIS team

> > Santa Cruz Galaxy Workshop August 15, 2012

What is Quiescence?

Data

- Photometry
 - CFHT BRI
 - *HST*/ACS *V*+*I* imaging from AEGIS
- Redshifts
 - spectroscopic redshifts from DEEP2 survey; photometric redshifts from Jiasheng
 - restrict to 0.5<z<0.8 to minimize *k*-corrections
- Rest-frame Magnitudes
 - k-correct v4.2 (Blanton et al. 2007)
- GIM2D
 - bulge+disk decompositions by Luc Simard
 - V, I, r_e for bulge and disk component
- Stellar Masses
 - $\circ~$ stellar masses of spectroscopic sample from Bundy et al. 2006
 - $\circ~$ fit a relationship between M_*/L and V, I, ~z

Results

Cheung et al. (submitted)

M_*/r_e Overlap Region

- Genuine inner structural difference between quenched and star-forming galaxies
 - blue cloud galaxies cannot simply *fade* on to the red sequence
 - migration to red sequence requires a significant rearrangement of the *inner stellar mass*

Color Central Surface Mass Density

- $\Sigma^*_{1 \text{kpc}}$ corrects the outliers
- Suggests that inner structure of galaxies is most related to quiescence

A Visual Approximation of our Conclusions

UCSC AEGIS Meeting June 19-21, 2012

- Sérsic index most sharply discriminates starforming galaxies from quiescent galaxies
 o however, ~30% of high *n* galaxies are still starforming
- Central surface mass density corrects these outliers, suggesting that it is the *inner* structure of galaxies that is most related to quiescence
- Red sequence bulges are ~2x as massive as blue cloud bulges, while also ~2x as small, thus corroborating our conclusion that stellar mass density must absolutely increase at the centers of galaxies as they quench