Morphology and Size Evolution of Massive and Compact Galaxies

Daniel Ceverino (UAM, Madrid)

Avishai Dekel, Frederic Bournaud, Andreas Burkert, Reinhard Genzel, Joel Primack, Anatoly Klypin

Structure of massive galaxies at high-z

- Massive, M_s≈10¹¹ M_{sun}, spheroids or nuggets
- Compact (Re < 2-3 kpc).
- Which is the main mechan the formation of these cor galaxies?
- A Very dissipative process
- Mergers? VDI? Both?

Szomoru, Franx, van Dokkum 2011

Galaxy formation simulations done with ART

- AMR code: HYDRO-ART (Kravtsov et al 1997, Kravtsov 2003)
- Gas Cooling, Star Formation, Stellar Feedback (Ceverino & Klypin 2009; Ceverino, Dekel and Bournaud 2010)
 - Cooling below 10⁴ K (minimum temperature of 300 K).
 - Thermal feedback + runaway stars.
 - Things that we are NOT doing (although it is tempting):
 Shutdown cooling, shutdown of hydrodynamical forces.
- Sample of 30 halos with a virial mass between 10¹² -10¹³ M_☉ h⁻¹ at z=1
- Maximum resolution of 30-70 pc

.1 85 5

2 ensity

Young stellar disc

Ceverino, Dekel & Bournaud 2010

A Massive Bulge

Stellar Surface Density

Face-on view

Edge-on view

Mass-size relation

Nuggets? R_e< 1 kpc

1011

0.9 0.8 S/T=0.6-0.7 **ω**0.7 0.6 0.3 0.5 0.2 0.4 Ms (Msun) 10¹⁰ TIME z=21011 1012 Mvir (Msun)

bulge and disc growth

- Continuous disc growth fuels by gas accretion
- Continuous bulge growth due to VDI
- Major mergers only produces discrete and rare jumps in the stellar growth.
- $M_s/M_{vir} \approx 0.5 \ \Omega_b/\Omega_m$

One example:

Period of frequent wet major mergers

Period of strong gas accretion, disc growth and disk instabilities (VDI)

Size and morphology evolution

Consistent with observations

Classical spheroids

Spheroid and disk components

Classical spheroids plus exponential discs

Disc: <n>=1.5 ± 0.6

Classical bulges

Exponential discs

Conclusions

- Final products of violent disk instability (VDI) are compact (R_e=2-4 kpc), classical (2<n_{sersic}<5), spheroids or S0s with S/T≈0.6-0.7
- Disc and bulge grow and evolve together mostly by smooth gas accretion and VDI
- The effective radius of typical, $M_s=10^{11}$ M_{sun} , galaxies at z=1 has grown by a factor 2.5 between z=4 and z=1.
- Spheroids grow during an early phase of frequent wet mergers (z>3) plus a second, more extended phase of disc and bulge growth by VDI.

