“If your experiment needs statistics, you ought to have done a better experiment.”
Ernest Rutherford
Time domain data (a day at a time)
Time domain data (a day at a time)
Sampling, noise, and baseline are all important

Lightcurve shape as a proxy for metallicity (phases in a Fourier series). Noise in period determination (sparse sampling) reflected in the metallicity accuracy.
What is a light curve?

\[y(t) = \sum_{m=1}^{M} \alpha_m G(t|\theta_m), \]

\(G(t|\theta) \) are functions (uneven sampling, period or non-periodic). For example \(G(t) = \sin(wt) \), or \(G(t) = \exp(-Bt) \)
Fourier Analysis

Fourier transform

\[H(f) = \int_{-\infty}^{\infty} h(t) \exp(-i2\pi ft) \, dt, \]

Inverse Fourier transform

\[h(t) = \int_{-\infty}^{\infty} H(f) \exp(i2\pi ft) \, df, \]

Numerical Recipes define this with a minus sign.
Note also the packing of the arrays.

Convolution, deconvolution, filtering, correlation and autocorrelation, power spectrum are easy for evenly sampled, high signal-to-noise data. Low signal-to-noise and uneven sampling Bayesian analyses can be better.
Power Spectrum (PSD)

\[\text{PSD}(f) \equiv |H(f)|^2 + |H(-f)|^2. \]

Power Spectrum is the amount of power in the frequency interval \(f \rightarrow f + df \)

\[
h(t) = \sin\left(\frac{2\pi t}{T}\right) \quad \text{FT} \quad \text{PSD}(f) = \delta(f = 1/T)
\]

\[
P_{\text{tot}} = \int_{0}^{\infty} \text{PSD}(f) \, df = \int_{-\infty}^{\infty} |h(t)|^2 \, dt;
\]

Total power is the same whether computed in frequency or time domain (Parseval's Theorem)
Fourier Analysis in Python

import numpy as np
from scipy import fftpack

compute PSD using simple FFT
N = len(data)
df = 1. / (N * dt)
PSD = abs(dt * fftpack.fft(data)[:N / 2]) ** 2
f = df * np.arange(N / 2)
How do we deal with sampled data

Sampling of the data – you just can’t get away from it…

\[H_k = \sum_{j=0}^{N-1} h_j \exp[-i2\pi jk/N], \]

Uniformly sampled

\[h_j = \frac{1}{N} \sum_{k=0}^{N-1} H_k \exp[i2\pi jk/N] \]

FFT \(O(N\log N) \) rather than \(N^2 \) (numpy.fft and scipy.fft)
Sampling frequencies: Nyquist

What is the relation between continuous and sampled FFTs

Nyquist sampling theorem

• For band-limited data ($H(f)=0$ for $|f| > f_c$)
 (the band limit or Nyquist frequency)

 • There is some resolution limit in time $t_c = 1/(2 f_c)$ below which $h(t)$ appears smooth

$$h(t) = \frac{\Delta t}{t_c} \sum_{k=-\infty}^{\infty} h_k \frac{\sin[2\pi f_c(t - k\Delta t)]}{2\pi f_c(t - k\Delta t)}.$$

We can now reconstruct $h(t)$ from evenly sampled data when $\delta t < t_c$ (Shannon interpolation formula or sinc shifting)
Estimating the PSD
Welch transform

Compute FFT for multiple overlapping windows on the data
from matplotlib import mlab

compute PSD using Welch's method
this uses overlapping windows to reduce noise
PSDW, fW = mlab.psd(data, NFFT=4096, Fs = 1. / dt)
Filtering Data

Filtering decreases the information (even if visually you are suppressing the noise) and you should consider fitting to the raw data when fitting models

Low pass filter suppress frequencies with $f > f_c$

$$\hat{Y}(f) = Y(f) \Phi(f),$$

Could set $f > f_c$ to zero in $\phi(f)$ but this causes ringing

Optimal filter is Wiener filter (minimize MISE $\hat{Y} - Y$)

$$\Phi(f) = \frac{P_s(f)}{P_s(f) + P_n(f)},$$

Signal

Noise
Wiener Filtering

Usually fit signal and noise to PSD (assumes uncorrelated noise)

\[PSD_Y(f) = PSD_S(f) + PSD_N(f) \]

An interesting relation to kernel density estimation
import numpy as np
from scipy import optimize, fftpack

compute the PSD

Set up the Wiener filter:
fit a model to the PSD consisting of the sum of a Gaussian and white noise
signal = lambda x, A, width: A * np.exp(-0.5 * (x / width) ** 2)
noise = lambda x, n: n * np.ones(x.shape)

func = lambda v: np.sum((PSD - signal(f, v[0], v[1]) - noise(f, v[2])) ** 2)
v0 = [5000, 0.1, 10]
v = optimize.fmin(func, v0)

P_S = signal(f, v[0], v[1])
P_N = noise(f, v[2])

define Wiener filter
Phi = P_S / (P_S + P_N)

h_smooth = fftpack.ifft(Phi * HN)
Minimum component filtering

- Mask regions of signal and fit low order polynomial model to unmask regions
- Subtract the low order model and FFT the signal
- Remove high frequencies using a low pass filter
- Inverse FT and add the baseline fit

Used for the case of fitting the baseline (continuum)
Is there signal in my noise?

Hypothesis testing – are the data consistent with a stationary process

Simple example:

\[y(t) = A \sin(\omega t) \]

\[\text{var}(t) = \sigma^2 + \frac{A^2}{2} \]

\(X^2 \) of the data (assuming A=0)

\[\chi^2_{dof} = N^{-1} \sum_j (y_j / \sigma)^2 \]

Minimum detected variability amplitude

\[A > 2.9\sigma / N^{1/4} \]
Is there a periodicity in the data?

\[y(t) = A \sin(\omega t + \phi) \quad y(t) = a \sin(\omega t) + b \cos(\omega t) \]

Non-linear in \(w \) and \(\Phi \) \quad Linear in all but \(w \)

Consider it a least-squares problem – without requiring evenly sampled data

\[
L \equiv p(\{t, y\} | \omega, a, b, \sigma) = \prod_{j=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{[y_j - a \sin(\omega t_j) - b \cos(\omega t_j)]^2}{2\sigma^2} \right).
\]
Periodogram

FFT Space

\[\text{PSD}(f_k) = 2 \left(\frac{T}{N} \right)^2 \left[\left(\sum_{j=0}^{N-1} h_j \cos(2\pi f_k t_j) \right)^2 + \left(\sum_{j=0}^{N-1} h_j \sin(2\pi f_k t_j) \right)^2 \right] \]

Time Space

\[P(\omega) = \frac{1}{N} [R^2(\omega) + I^2(\omega)]. \]

\[I(\omega) = \sum_{j=1}^{N} y_j \sin(\omega t_j), \quad R(\omega) = \sum_{j=1}^{N} y_j \cos(\omega t_j), \]
Lomb-Scargle Periodogram

\[P_{LS}(\omega) = \frac{1}{V} \left[\frac{R^2(\omega)}{C(\omega)} + \frac{I^2(\omega)}{S(\omega)} \right], \]

\[R(\omega) = \sum_{j=1}^{N} w_j (y_j - \bar{y}) \cos[\omega(t_j - \tau)], \quad I(\omega) = \sum_{j=1}^{N} w_j (y_j - \bar{y}) \sin[\omega(t_j - \tau)], \]

\[C(\omega) = \sum_{j=1}^{N} w_j \cos^2[\omega(t_j - \tau)], \quad S(\omega) = \sum_{j=1}^{N} w_j \sin^2[\omega(t_j - \tau)]. \]

Generalized for heteroscedastic errors but still corresponds to a single sinusoidal model. Model is non-linear in frequency so we typically maximize that through a grid search.
import numpy as np

from astroML.periodogram import lomb_scargle, search_frequencies

generate data
T = np.random.randint(100, size=N) + 0.3 + 0.4 * np.random.random(N)
y = 10 + np.sin(2 * np.pi * t / P)
dy = 0.5 + 0.5 * np.random.random(N)

y_obs = y + np.random.normal(0, dy)

period = 10 ** np.linspace(-1, 0, 1000)
omega = 2 * np.pi / period

sig = np.array([0.1, 0.01, 0.001])
PS, z = lomb_scargle(t, y_obs, dy, omega, modified=True, significance=sig)

omega_sample, PS_sample = search_frequencies(t, y_obs, dy,
 n_save=100,
 LS_kwargs=dict(modified=True))
Generalized Lomb-Scargle

LS assumes a zero mean (calculated from the data) which can bias the results. We can however add this as a term to the analysis.
Where next...

Classification

Regression
Where next...

Read the book – send comments/corrections/suggestions
ajc@astro.washington.edu