SPATIAL SEARCHES IN ASTRONOMY DATABASES MULTI-DIMENSIONAL INDEXING FOR SIMULATIONS AND OBSERVATIONS

Storing Simulations

\square Millennium Run (MPA)

- 10 billion particles, 64 snapshots
- FoF groups and merger trees
\square Millennium XXL
- 300 billion particles
\square MultiDark - Bolshoi
\square Turbulence simulations (JHU)
- 1024^{4} grid, 27TB

Storing Simulations

\square Millennium Run (MPA)

- 10 billion particles, 64 snapshots
\square FoF groups and merger trees
\square Millennium XXL
- 300 billion particles
\square MultiDark - Bolshoi
\square Turbulence simulations (JHU)
- 1024^{4} grid, 27TB

Observing Simulations

\square Comparison to real observations
\square Lots of spatial searches
\square In the database?

Sky Coverage

\square For precise window function
\square Virtual surveys

Outline

\square Query shapes in SQL
\square Indexing with space-filling curve
\square Combine for spatial searches
\square Periodic boxes
\square Celestial sphere

Databases

\square Which one to use depends on the task
\square Sqlite, MySQL, PostGRES, DB2, Oracle, SQL Server

- Free "express versions" of the big ones, too
\square Customization is a must
\square There is always something missing
- Extend by loading your libraries

Query Shapes

Geometric primitives

\square Sphere, Box, Cone...

Query Shapes

\square IShape interface
TopoPoint Contains(Point p);
TopoShape GetTopo(Box b);
Box GetBoundingBox();
\square Geometric primitives
\square Sphere, Box, Cone...

Query Shapes

\square IShape interface
TopoPoint Contains(Point p);
TopoShape GetTopo(Box b);
Box GetBoundingBox();
\square Composites

- Intersect, Union, Difference...

Query Shapes

$\square \mathrm{In}$ SQL
 \square UDT

ISSAC at HiPACC

```
/* Sphere */
|eclare @s Sphere = Sphere::New (1,2,3,10);
    -- Check if a point is inside
-select @s.ContainsPoint (1,2,3), @s.ContainsPoint (99,0,0);
    go
    /* Box */
\square \mp@code { d e c l a r e ~ @ b ~ B o x ~ = ~ B o x : ~ : ~ N e w ~ ( 0 , 0 , 0 , 1 0 , ~ 1 0 , ~ 1 0 ) ; }
select @b.ContainsPoint (1,2,3), @b.ContainsPoint (99,0,0);
Lselect @b.ToString(); -- string representation
    go
```

 /* String Representation */
 \square declare @x Box $=$ 'BOX $[0,0,0,10,10,10] '$
$L_{\text {select }}^{6}$ (x.ContainsPoint $(1,2,3)$, @x.ContainsPoint $(99,0,0)$;
go

Query Shapes

\square Generic
\square UDT
Boolean
\square Methods

ISSAC at HiPACC

```
/* Generic Shapes */
\squaredeclare @a Shape = 'BOX [0,0,0, 10,10,10]';
    select @a.ContainsPoint (1,2,3), @a.ContainsPoint (99,0,0)
select @a.ToString();
    go
```

 /* Boolean Algebra */
 \square declare @s1 Shape $=$ 'BOX $[0,0,0,10,10,10] ' ;$
declare @s2 Shape $=$ 'SPHERE $[0,0,0,5]$ ';
declare @sU Shape $=$ Shape: : NewUnion (@s1, @s2);
declare @sI Shape $=$ Shape: : NewIntersection (@s1, @s2);
declare @sD Shape $=$ Shape: : NewDifference (@s1, @s2);
select @sU.ToString() union all
select @sI.ToString() union all
select @sD.ToString();
go

Query Shapes

\square Generic
 \square UDT

Boolean

/* Generic Shapes */
\square declare @a Shape $=$ 'BOX $[0,0,0,10,10,10]^{\prime} ;$
select @a.ContainsPoint $(1,2,3)$, @a.ContainsPoint $(99,0,0)$ select @a.ToString();
go

```
/* Using the parser */
\squaredeclare @u Shape, @i Shape, @d Shape;
Gselect @u = 'UNION [BOX[0,0,0,2,2,2], SPHERE[0,0,0,2]]', 2);
    @i ='INTERSECTION [BOX[0,0,0,2,2,2], SPHERE[0,0,0,2]]',
    @d = 'DIFFERENCE [BOX[0,0,0,2,2,2], SPHERE[0,0,0,2]]';
```

Lselect @sD.ToString();
ISSAC at HiPACC
go

Indexing Tables

\square Better performance of queries

- Instantaneous range searches
- Fast JOINs
\square Syntax

$$
\begin{gathered}
\text { CREATE INDEX ix_Name ON Table } \\
\text { (X ASC, ...) INCUDE (V, ...) }
\end{gathered}
$$

Multi-Dimensional

\square Map the space to a simple index
\square Different kinds of Space-Filling Curves
\square Morton's Z-curve
\square Peano-Hilbert Curve

Peano-Hilbert Curve

\square Hierarchical space filling

First Order

Peano-Hilbert Curve

\square Hierarchical space filling

First Order

Second Order
012
H1H1H1H1H11H

Peano-Hilbert Curve

\square Hierarchical space filling

First Order

Second Order

Third Order

Peano-Hilbert Curve

\square Hierarchical space filling

First Order

Second Order
012

Third Order

The Hilbert Curve

Also others...

\square Morton Z-order
\square Simple bit interleave

Second Order
O 12
H1H1H1+1H1+1H

The Z-Order Curve
\square Which one to use?
\square Statistical analyses

- Correlation fn

First Order

Second Order

Divide and Conquer

Covers for Shapes

\square Inside approximation \square Outside overshoot

Covers for Shapes

\square Inside approximation
\square Outside overshoot
\square They are Key ranges

| Level 0 |
| :---: | :---: | :---: |
| Level 1
 2 3
 0 1
 10 11 14 15
 8 9 12 13
 2 3 6 7
 0 1 4 5 |

Covers for Shapes

\square Inside approximation

\square Outside overshoot
\square They are Key ranges

| Level 0 | Level 1 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 11 14 15
 2 3
 0 9 12 13
 2 3 6 7
 0 1 1 4 5 | | | |

Key between 0 and 3

Covers for Shapes

\square Inside approximation

\square Outside overshoot
\square They are Key ranges

| Level 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 3
 0
 0 11 14 15
 8 9 12 13
 2 3 6 7
 0 1 4 5 |

Covers for Shapes

\square Inside approximation

\square Outside overshoot
\square They are Key ranges

| Level 0 Level 1 | Level 2 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 11 14 15
 2 3 9 12 13
 0 1 3 6 7
 0 1 4 5 | | | |

Covers for Shapes

\square Inside approximation

\square Outside overshoot
\square They are Key ranges

Periodic Boundaries

\square Infinite with periodicity
\square Have to search all boxes

Periodic Boundaries

\square Infinite with periodicity
\square Have to search all boxes

Searching in SQL

\square Key filter
\square By Cover
\square ShiftX,-Y,-Z \square Where?

```
    /* Peano-Hilbert Cover */
\square \mp@code { G e l e c t ~ * ~ f r o m ~ f S i m u l a t i o n C o v e r ( ~ s i m s . M i l l i M i l ( ) , }
    'SPHERE[0,10,10,5]' ,5);
    go
```

 /* Cover translates the search onto built-in index */
 \square declare @s Shape $=$ 'SPHERE $[0,10,10,5]$ ';
Њwith Cover (Fullonly, KeyMin, KeyMax, Shiftx, Shifty, Shiftz)
as (
select * from fSimulationCover(sims.MilliMil(), @s, 5)
where Fullonly $=1$-- inside cover
)
select $h . H a l o I D, h . X+c . S h i f t X$ as X,
h. Y + C. ShiftY as Y,
h. Z + C.ShiftZ as Z
from MilliMil..MpaHalo h inner join Cover c
on h.PHKey between c.KeyMin and c.KeyMax
-where SnapNum $=63$

Real!

\square E.g.,

/* Multiple searches around POI */
bwith QueryShapes (FoFID,Shape) as
select top 10 FoFID, Shape::NewSphere (X,Y, Z, 10)
from MilliMil..FoF
where SnapNum=63 order by M_TopHat200 desc
select distinct s.FoFID, g.GalaxyID, g.X+c.ShiftX as X,
g.Y+c.ShiftY as Y,
g. Z+c.ShiftZ as Z
from QueryShapes s
cross apply fSimulationCover(sims.MilliMil(),s.Shape,5) c
inner join MilliMil..DeLucia2006A g
on g.PHKey between c.KeyMin and C.KeyMax
where g. SnapNum=63
and ((c.Fullonly=1) -- Inner cover
or
(c.Fullonly=0 -- Boundary cover and $1=$ s. Shape. ContainsPoint ($\mathrm{g} . \mathrm{X}+\mathrm{c}$.ShiftX, g. Y + c.ShiftY, g.Z+C.ShiftZ))

Online Interfaces

Web Services

\square Programming interfaces
\square Execute SQL queries

- Most flexible
\square Inject probes in simulations
- Turbulence
- Cosmology

36

Sky Coverage

No Sky Coverage?

2 M. F. Pedbost et al.

Figure 1. SDSS colour composite image (vri) for our prototype unusual galaxy cluster, at RA $=16^{\mathrm{h}} 23^{\mathrm{m}} 76^{\mathrm{s}}$, Dec $=+97^{\circ} 62^{\prime} 12^{\prime \prime}$, identified by Galaxy Zoo participants. North is at the top, East is to the left.

Spherical Geometry

Approaches to Consider

\square Pixel maps
\square Sensitivity, etc...
\square Equations of shapes
\square Spherical "vector graphics"
\square And beyond...

An Observation

\square FITS header with WCS
\square Image dimensions map to the geometry
\square More exposures?
\square No common pixel coordinate-system
\square Overlapping areas

Common Pixels

\square Pre-defined pages of an atlas

- Standard in cartography
\square Image pyramids of hierarchical pixels
- Including HTM, Igloo, HEALPix, SDSSPix, etc...

\square Always approximate!

Practical Implementation

\square Looking at Terapixels
\square We know how to work with images
\square Now have commodity Internet

- We have cheap hard-drives

WorldWideTelescope.org Sky in Google Earth
\square Integrated catalogs for efficiency
\square How about more surveys?

Drawing with Equations

\square Working with 3D normal vectors
\square Benefits include
\square No wraparound
\square No projections
\square No singularities

Drawing with Equations

\square Direct 3D approach
\square Halfspace \rightarrow Circle/Cap
\square Convex \rightarrow Simple shapes
\square Region

- Unions of convexes
\square Patches on the sphere

Point in Region Test

\square Halfspace: one side of a plane (\vec{n}, c)

- Inside, when $\vec{n} \cdot \vec{x}>c$
\square Convex: a collection of halfspaces
- Inside, when inside all halfspaces
\square Region: a collection of convexes
\square Inside, when inside any convex

Shape Operations

\square Intersection
\square Concat halfspace lists
\square Union
\square Concat convex lists
\square Unique coverage

- Analytic area
\square Boolean algebra

Difference of Convexes is a Region

\square The set of Regions is closed for the Boolean ops

Simplification

\square Eliminate redundant halfspaces

- First handle trivial combinations of constraints
\square Then solve geometry on the surface - Derive Roots, Arcs, Patches
\square Eliminate redundant convexes
- Some trivial cases, but...
\square Make convexes disjoint
- Unique coverage, area, etc.
\square Stitch together convexes
- When possible

SphericalLib .NET

\square C\# code ~ 10 k lines
\square OS independent (Windows, Un*x w/ Mono)
\square Documentation via Sandcastle
\square Great performance!
\square Sloan Digital Sky Survey in 10s
($13 \times$ larger than USA in area)

Numerical Imprecision

\square Double precision calculations

- IEEE 754 standard
\square Degeneracy
- When are two vectors the same?
\square Spatial resolution limit
- Roughly 30 cm on Earth
\square Lots of tricks from Graphics Gems

Sky coverage of the Sloan Digital Sky Survey's $5^{\text {th }}$ Data Release and the Galaxy Evolution Explorer's 2 ${ }^{\text {nd }}$ Public Release

Region in SQL

```
DECLARE @S VARCHAR (MAX), @r VARBINARY (MAX),
    @z VARCHAR (MAX), @u VARBINARY(MAX)
SELECT @S = 'REGION CIRCLE J2000 180 0 60',
    @z = 'POLY J2000 180 0 182 0 182 2 180 2',
    @r = sph.fSimplifyString(@s),
    @u = sph.fUnion(@r,sph.fSimplifyString(@z))
SELECT sph.fGetArea(@r), sph.fGetArea(@u)
-- 3.14151290574491 6.35572804450646
/*
    SQL Server Execution Times:
        CPU time = 0 ms, elapsed time = 1 ms.
*/
```


Footprint Services

\square All about coverage

- Editor and calculator
\square Online public repository
- On-the-fly visualization
- STC translator, etc...
\square Web services
- Simple programming

http://voservices.net/footprint

ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVI

The Westin La Paloma Resort \& Spa Tucson, AZ, USA
15-18 October 2006

 and visalisation technologea
The 13 invived ead 36 contributd tulss, 116 pesters, seven Peor demonstration booths,

 Selutions sor Large Dotit, Adrueces in timpiging \& Culbection Algerithms, Quallty Mansement in Avtronemicel Data Manacement Sprteme. Medern Cond Computing in

 whives soh as that for $H S 5$. bles cesoinuing development of tondurdi ion ntrononizal
development.

 Buiting obervetory' Lheger Archives. Pipdetine Procestimg of spectroxcopic Soservetans IRAP Users end Developers, and Neat Generabion of Visuliation Teel

Astronomical Society of the Pacipic CONFERENCE SERIES

Astronomical Society of the Pacific

CONFERENCE SERIES

.

VOLUME 376

ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XVI

Edited by
Richard A. Shaw, Frank Hill and David J. Bell

55

Hybrid Solutions

Heuristic Simplification

\square Before and After

Indexing the Sky

\square Hierarchical Triangular Mesh

\square Region approximation
\square Fast filtering using HTM ID ranges

Anatomy of an SDSS Region

HTM Filtering

```
WITH Cover AS
(
    SELECT * FROM dbo.fHtmCoverRegion
            ('REGION CIRCLE J2000 180 0 10')|
)
SELECT o.ObjID
FROM PhotoObj AS o INNER JOIN Cover AS c
    ON O.HtmID BETWEEN c.HtmIDStart AND c.HtmIDEnd
```


Summary

\square Store simulations, e.g., the reference Millennium
\square Simulations take 10x longer than analysis
\square Databases enable fast searches
\square Custom routines
\square Space-filling curves
\square Direct comparison of observed universe to sims

