Treecodes for Cosmology
Thomas Quinn
University of Washington
N-Body Shop
Outline

- Motivation
- Multipole Expansions
- Tree Algorithms
- Periodic Boundaries
- Time integration
- Gravitational Softening
- Parallel Architecture of GASOLINE
- SPH
Motivation: Why I am a Tree Hugger

- Dynamic Range
 - Minimum Box Size: 25 Mpc
 - Maximum Resolution: 1 kpc
 - 15 trillion grid cells!

- Geometry
 - Uniform: Large Scale
 - Spherical: Halos
 - Planar: Disk
 - All in one simulation!
Gas

Stars

Dark Matter
Multipole Expansions

- Poisson Equation: \(\nabla^2 \Phi = 4\pi G \rho. \)

- Integral Form: \(\Phi(x) = -G \int \frac{\rho(x')}{|x' - x|} d^3 x' \)

- Using N-bodies: \(\rho(r) = \sum_{i \in V} \delta(r_i - r) m_i \)

- (but note softening issue)

- We naively have: \(\Phi(x_i) = -G \sum_{j}^{N} \frac{m_j}{|x_j - x_i|} \)

- Expensive!
Multipole Expansions

- For $x >> |x'|$, $\Phi(x) = -G \sum_{lm} C_{lm} \frac{Y_{lm}(\theta, \phi)}{r(l+1)}$
- Terms scale as $\max(x')^l / r^{l+1}$
- Hence “theta” = s/r is a measure of accuracy
Multipole Moments

- In Cartesian coordinates:
 \[\Phi(x) = -G \int d^3 x' \left[\frac{\rho(x')}{|x|} + \frac{x' \rho(x') \cdot x}{|x|^3} + \frac{(3x'_i x'_j - |x'|^2 \delta_{ij}) \rho(x') x_i x_j}{2|x|^5} \right] + \ldots \]

- More complicated, but quicker
 - For large x, forces due to all particles in x' evaluated with a few operations.

- Local expansions are also possible (FMM):
 \[\Phi(x) = -G \sum_{lm} L_{lm} Y_{lm}(\theta, \phi) r^l \]

See Greengard 1988 thesis
Multipole Accuracy Comparison

Cost vs. RMS error for renormalized conditions

CPU time (seconds)

relative error
Trees: divide et impera

• “... most important nonlinear structures in computer algorithms.” (Knuth ACP)
• A root node + disjoint set of subtrees
• Leaf: a node with no subtrees
• Many representations:
 • Node + child pointers
 • Node + parent pointers
 • heap
• Divide and conquer a common paradigm:
 • e.g. Quicksort.
Spatial Trees

- Orthogonal Recursive Bisection
 - Split the median particle: a balanced tree (k-d tree)
 - Guaranteed maximum depth
Balanced Tree Representation

- Array of nodes: nodes[N]
- Index of first child of node \(n = 2^n \)
- Index of second child of node \(n = 2^n + 1 \)
- Index of parent of node \(n = n \gg 1 \)
- No pointers or recursion needed for traversal
Oct Tree (or Barnes-Hut)

- See Barnes & Hut, 1986, Nature
- Split cubical node into 8 equal cubes
- Nodes are small and nearly spherical
 - Small multipole moments
- Not balanced
Spatial Binary Tree

- Bisect longest dimension of bounding box
- Split to bisect space
- Not balanced
- Adaptable to disks
Gravity Algorithm

- Hierarchically divide space into cells
- The force on a particle is its interaction with a cell
- If the multipole expansion is valid then the interaction is the multipole expansion
- If not, the interaction is the sum of the interactions with the cells children.
- If cell is a leaf (or “bucket”) interact with the contained particles.
Basic algorithm ...

- Barnes-Hut approximation: $O(n \log n)$
 - Influence from distant particles combined into multipole moment
 - Traversal stops when multipole is accurate
The opening criterion

- An open radius is only calculated once for each cell: $r_{\text{open}} \sim \frac{r_{\text{max}}}{\theta}$
Efficient Walking

- Walk a high level node
 - Determine all cells with acceptable expansions
 - These cells are also acceptable for all children
 - The other cells need to be checked when the node's children are walked.
- Go through check list with child nodes
- Construct final interaction list at bucket level.
Neighbor finding walk (SPH)

- Use a priority queue (loser tree) to track distance to k-th nearest neighbor.
- Start at bucket containing particle.
- Search parent cell for uncles that overlap search ball.
- Descend each child of uncle which overlaps search ball.
- Replace particles in priority queue with found particles.
Inverse Neighbor Finding

• Which particles consider me a neighbor?
• Search for particles with a smoothing length that encloses me.
• Cells have bounding boxes of all smoothing radii of the particles they contain
• Walk similar to neighbor finding.
• Useful when $N_{active} << N_{total}$
Periodic Boundaries

- For shells in an infinite Universe:
 - $F(r) \sim \frac{GM(r)}{r^2} \sim \text{constant at each radius}$
 - Sum will not converge!

- TreePM
 - Calculate long distance forces using Mesh and FFT

- Ewald Summation
 - Split the sum into 2 converging parts.
TreePM (Gadget)

- FFT is fast (+)
- FFT has lots of communication (-)
- Available fast libraries: FFTW (+)
- Inaccuracies at the FFT grid scale (-)
 - Transition between grid and tree
- Tree walk is only local (+)
Ewald Summation

- Split Green's function:
 \[\frac{1}{r} = \frac{\text{erfc}(\alpha r)}{r} + \frac{\text{erf}(\alpha r)}{r} \]

- Modified Green's function:
 \[g(r) = \frac{\pi}{\alpha^2 L^3} - \sum_{l} \frac{\text{erfc}(\alpha|r - lL|)}{|r - lL|} - \sum_{\hbar \neq 0} \frac{1}{\hbar^2 \pi L} \exp \left(-\frac{\pi^2 \hbar^2}{\alpha^2 L^2} \right) \cos \left(\frac{2\pi}{L} \hbar \cdot r \right) \]

- Store differences between this and 1/r in large array.

- Perform lookup for each force calculation.
Ewald Reduced Cell Multipole

- Perform walk over fundamental cube and a number of replicas (e.g. 26 neighbors)
- Calculate forces due to Ewald sum of multipole moments of root cell of fundamental cube.
- Spatial sum modified to avoid double counting.
- Algebraically complex
- Sum is somewhat expensive (-)
- Efficient in parallel (+)
Force Calculation Overview

- Build Tree (top down)
- Calculate multipole moments and opening radius (bottom up)
- Walk nodes then buckets, constructing interaction lists
- Calculate force on particles in a bucket using interaction lists
- Calculate Ewald sum using root multipole.