DISK GALAXIES FROM Z=1 TO THE PRESENT: KINEMATIC DECOMPOSITION

F. Governato, A. Brooks, C. Brook, L. Pope,
Simulated disks used to be small.

Feedback reduces physical angular momentum loss during the build up of disks.
Are they still too small? The Luminosity-size relation is a fundamental test.
The Luminosity - Size Relation at z=0 (Brooks et al. '10?)

Figure 3. B band disk scale length as a function of magnitude for our simulated galaxies. Simulated galaxies at $z=0$ are shown as large red circles. The observational results of Graham & Worley (2008) and van Zee (2000) are shown for comparison.
Simulated disk galaxies have the correct size.

Alyson Brooks in prep.
Data from Graham & Worley, 2008
MacArthur et al, Miller et al.
Where do disk stars come from?

clumpy cold flows shocked

The kinematic components of simulated galaxies need to be 1) indentified and 2) imaged.
Are they still too small? The Luminosity-size relation is a fundamental test.
Kinematic components:

ROTATING
1) Thin Disk

SPHEROID
2) Non rotating Halo
3) Bulge

PARTIALLY ROTATING:
4) Thick Disk
5) Pseudo bulge
DECOMP: an IDL + TIPSY procedure to divide the stellar component of a galaxy into its kinematic sub components.

/home/hipacc-29/ANALYSIS/Decomposition
Theory vs Observations
Kinematic vs Photometric Decompositions