Radiative Transfer in a Clumpy Universe: the UVB

Piero Madau
UC Santa Cruz

Wednesday, August 4, 2010
The cosmic UVB originates from the integrated emission of star-forming galaxies and QSOs. It determines the thermal and ionization state of the IGM, the repository of most of the baryons in the Universe at high redshift.

It is a crucial yet most uncertain input parameters for cosmological simulations of LSS and galaxy formation, for interpreting QSO absorption-line data and derive information on the distribution of primordial gas -- traced by HI, HeI, HeII transitions -- and of the nucleosynthetic products of star formation -- CIII, CIV, SiIII, SiIV, OVI, etc.
Outline

Hydrogen recombination
The dark ages
Cosmic structure formation
The reionization equation
Quasars or galaxies?
The Gunn-Peterson trough
Quasar absorbers along the LOS
Effective optical depth of the Universe
Cosmological radiative transfer
CUBA (the code)
Hydrogen recombination

Two factors delay recombination:
1. \(\eta^{-1} = 1.5 \times 10^9 \gg I \)
2. inability to maintain equilibrium as \(H^{-1} \ll t_{\text{rec}} \equiv x/\dot{x} \)

\[\frac{x^2}{1 - x} = 2.5 \times 10^6 \eta^{-1} \left(\frac{I}{k_B T} \right)^{3/2} \exp \left(-\frac{I}{k_B T} \right) \]

Big coefficient

\(I = 13.6 \text{ eV} \)
\(\eta^{-1} = n_Y/n_b \)

\[\log \frac{x = n_e/n_H}{(1+z)} \]

\(e^- + p \rightarrow H + \gamma \) @ \(z = 1100 \) marks the end of the plasma era

Equilibrium (Saha) eq. for \(x = n_e/n_H \)
Hydrogen recombination (a digression)

When an e⁻ is captured to the ground state of HI, it produces a photon that immediately ionizes another atom, leaving no net change.

When it is captured to an excited state, the allowed decay to the ground state produces a resonant Lyman series photon, which has a large capture cross-section → puts another atom in a high energy state that is easily photoionized again, thereby annulling the effect.

Two main routes to the production of atomic hydrogen:

1) two-photon decay from the 2s level to 1s.
2) loss of Lyα resonance photons by the cosmological redshift.
The “dark ages”...

Timescale for relaxation of matter temperature is

\[t_{\text{comp}} = \frac{3m_ec}{4\sigma_T a_B T^4} \frac{1+x}{2x} \]

\[z_{\text{th}} \simeq 580(\Omega_b h^2)^{2/5} \simeq 130. \]

..and their end

Universe becomes semi-opaque after reionization

\[\tau_T(z) = \int_0^z n_e(z)\sigma_T |c dt/ dz| dz = 0.087 \]

\[\rightarrow \text{Universe becomes semi-opaque after reionization} \]
The “dark ages”...

Timescale for relaxation of matter temperature is

\[t_{\text{comp}} = \frac{3 m_e c}{4 \sigma_T a_B T^4} \frac{1+x}{2x} \]

\[z_{\text{th}} \simeq 580 (\Omega_b h^2)^{2/5} \simeq 130. \]

..and their end

Universe becomes semi-opaque after reionization

\[\tau_T(z) = \int_0^z n_e(z) \sigma_T |c dt/dz| dz = 0.087 \]

\[\text{Universe becomes semi-opaque after reionization} \]
Cosmic structure formation: I

Clumpiness boosts H recombination rate:
\[\langle n_e n_p \rangle \alpha_B(T) = C \langle n_p \rangle^2 \alpha_B(T) \]
\[t_{\text{rec}} = (n_p \alpha_B C)^{-1} \]

Example: ionized gas of density \(n_e \) filling uniformly a fraction \(f \) of the available volume, rest is empty space.

Then
\[\langle n_e^2 \rangle = f n_e^2; \quad \langle n_e \rangle = f n_e \]
\[\rightarrow \langle n_e^2 \rangle = \langle n_e \rangle^2 / f \rightarrow C = 1 / f \]
Cosmic structure formation: II

HII region in homogeneous ISM (Stromgren analysis):

\[n_H \frac{dV}{dt} = \dot{N}_\gamma - V \alpha_B n_H^2 \]

\[\rightarrow V = \frac{\dot{N}_\gamma t_{\text{rec}}}{n_H} \left(1 - e^{-t/t_{\text{rec}}} \right) \]

HII region in expanding clumpy IGM (Shapiro & Giroux 1987):

\[n_H(t) \left(\frac{dV}{dt} - 3HV \right) = \dot{N}_\gamma - V \alpha_B \langle n_H(t) \rangle^2 C \]

\[V=\text{proper volume} \]
The reionization equation

Reionization @ milliFLOP speed (PM, Haardt, & Rees 1999)

\[Q_I(t) = \text{volume filling factor of HII regions at } t \]

\[Q_I(t) = \int_0^t \frac{\dot{n}_\gamma(t')}{{\langle n_H(t') \rangle}} \, dt' - \int_0^t \frac{Q_I(t')}{{t_{rec}}} \, dt' \]

(no redshifting, ionizing photons absorbed locally). Differentiating:

\[\frac{dQ_I}{dt} = \frac{\dot{n}_\gamma}{{\langle n_H \rangle}} - \frac{Q_I}{{t_{rec}}} \]

Contrary to the static case, cosmological HII regions will always percolate in an expanding universe with constant comoving ionizing emissivity....

simple diff. eq. statistically describes transition from a neutral Universe to a fully ionized one!
The reionization equation

\[t_{\text{rec}} \ll t \rightarrow Q_I \approx \frac{\dot{n}_\gamma}{\langle n_H \rangle} t_{\text{rec}} \]

Because of hydrogen recombinations, only a fraction \(t_{\text{rec}}/t \) of the photons emitted above 13.6 eV is actually used to ionize new IGM material.

The universe is completely reionized when \(Q_I = 1 \), i.e. when

\[\dot{n}_\gamma t_{\text{rec}} = \langle n_H \rangle \]

Numerical simulation of stellar reionization (Gnedin 2000)
Quasars or galaxies?

(Bright) QSOs are not responsible for the reionization of cosmic hydrogen!
radiation emitted at ν_e and z_e becomes resonant (Lyα) at $(l+z) = (l+z_e) \nu_\alpha/\nu_e \rightarrow$ scattered off the los with cross-section:

$$\sigma(\nu) = \frac{\pi e^2}{m_e c} f \phi(\nu)$$

total optical depth for resonant scattering (Gunn-Peterson)

$$\tau_{GP}(z_e) = \int_{0}^{z_e} \sigma n_{HI}(z) |c dt/dz| dz = \left(\frac{\pi e^2 f}{m_e \nu_\alpha} \right) \frac{n_{HI}}{H}.$$

Hydrogen is highly ionized at $z<5.7$
We can now quantify the degree of attenuation of UV radiation in a clumpy Universe by introducing the concept of an effective continuum optical depth τ_{eff} along the line-of-sight to redshift z:

$$\langle e^{-\tau} \rangle = e^{-\tau_{\text{eff}}}$$

where the average is taken over all lines-of-sight.
Effective optical depth

Assume random distribution of absorbers in column density and redshift space, then:

\[\tau_{\text{eff}}(\nu_o, z_o, z) = \int_{z_o}^{z} dz' \int_{0}^{\infty} f(N_{\text{HI}}, z)(1 - e^{-\tau}) \]

\[\tau = N_{\text{HI}}\sigma_{\text{HI}}(\nu) \left[\ldots + N_{\text{HeI}}\sigma_{\text{HeI}} + N_{\text{HeII}}\sigma_{\text{HeII}} \right] \]

\[\nu = \nu_0(1 + z)/(1 + z_0); \quad \sigma_i = \text{photoionization cross section} \]

⇒ Poissonian probability of encountering a total optical depth \(k\tau_0 \) is:

\[p(k\tau_0) = e^{-\Delta N} \Delta N^k / (\tau_0 k!) \]

\[\langle e^{-\tau} \rangle = e^{-k\tau_0} p(k\tau_0) = \exp[-\Delta N(1 - e^{-\tau_0})] \]

\[\langle \tau \rangle = \Delta N\tau_0 > \tau_{\text{eff}} = \Delta N(1 - e^{-\tau_0}) \]
The equation of cosmological radiative transfer describes the time evolution of the space- and angle-averaged monochromatic intensity J_ν:

$$
\left(\frac{\partial}{\partial t} - \nu H \frac{\partial}{\partial \nu} \right) J_\nu + 3H J_\nu = -c \kappa_\nu J_\nu + \frac{c}{4\pi} \epsilon_\nu
$$

* $J_{\nu_o}(z_o) = \frac{c}{4\pi} \int_{z_o}^{\infty} |dt/dz| \, dz \frac{(1+z_o)^3}{(1+z)^3} \epsilon_\nu(z) e^{-\tau_{\text{eff}}}$

$$
\tau_{\text{eff}}(\nu_o, z_o, z) = \int_{z_o}^{z} dz' \int_{0}^{\infty} f(N_{\text{HI}}, z')(1 - e^{-\tau})
$$

$$
\tau = N_{\text{HI}} \sigma_{\text{HI}}(\nu) \left[... + N_{\text{HeI}} \sigma_{\text{HeI}} + N_{\text{HeII}} \sigma_{\text{HeII}} \right]
$$

$$
\nu = \nu_0 (1+z)/(1+z_0)
$$

$\sigma_i =$ photoionization cross section

\begin{itemize}
 \item \textbf{equation} * must be solved by iteration since
 \item $\tau = \tau(J)$
\end{itemize}
Two important effects must be included:

1) absorbers are not only sinks but also sources of ionizing radiation. In particular, HeII reprocesses soft X-rays He-ionizing photons into UV H-ionizing ones.

\[
\begin{align*}
\epsilon(\nu, z) &= \epsilon_{\text{QSO}} + \epsilon_{\text{Gal}} + \epsilon_{\text{rec}} \\
\epsilon(z) &= (1 + z)^3 \int dLL\phi(L,z)
\end{align*}
\]

Ionizing recombination radiation includes:

- recombinations to ground state of H\text{I}, H\text{II}, H\text{III}
- Hell Balmer and 2-photon continuum
- Hell Lyman-alpha
2) besides photoelectric absorption, resonant absorption by H and He Lyman series will produce a sawtooth modulation of the spectrum.

\[\nu = \nu_\alpha \]

\[\nu = \nu_\beta \]

Continuum for free electrons

Balmer Lines

Lyman Lines

Ground State = Lowest Energy Level

\(H_\alpha \), \(H_\beta \), \(H_\gamma \)

Lyman Lines

\(\text{Ly} \alpha \), \(\text{Ly} \beta \), \(\text{Ly} \gamma \)

13.6 eV

\(\log J_\nu, \text{(arbitrary units)} \)

photon energy (eV)
J-solution flow chart

ABSORBERS
- HI distribution

SOURCES
- QSO/GAL LF
- SED

cosmological radiative transfer

\(\rightarrow J \)
J-solution flow chart

ABSORBERS
- HI distribution
- local radiative transfer ➔ H/He ionization state

SOURCES
- QSO/GAL LF
- SED

- cosmological radiative transfer ➔ J
J-solution flow chart

ABSORBERS

- HI distribution
- local radiative transfer \rightarrow H/He ionization state
- τ_{eff}, ε_{rec}

SOURCES

- QSO/GAL LF
- SED
- cosmological radiative transfer \rightarrow J
HI distribution ➔ local radiative transfer ➔ H/He ionization state

\(\tau_{\text{eff}}, \varepsilon_{\text{rec}} \) ➔ cosmological radiative transfer ➔ \(J \)

J-solution flow chart

ABSORBERS

HI distribution

SOURCES

QSO/GAL LF

SED
J-solution flow chart

ABSORBERS

- HI distribution

SOURCES

- QSO/GAL LF
- SED

Local radiative transfer ➔ H/He ionization state

- τ_{eff}, ε_{rec}

Cosmological radiative transfer ➔ J

UVB
HI distribution

local radiative transfer \rightarrow H/He ionization state

$\tau_{\text{eff}}, \varepsilon_{\text{rec}}$

cosmological radiative transfer \rightarrow J

UVB

QSO/GAL LF

SED

J-solution flow chart
Haardt & PM 2020, in preparation
http://pism.ucolick.org/CUBA

THE END