
OpenMP A.Klypin

• Shared memory and OpenMP

• Simple Example

• Threads

• Dependencies

• Directives

• Handling Common blocks

• Synchronization

• Improving load balance with Dynamic schedule

• Data placement

Simple Example

Variables and common blocks
can be either shared or private

Each thread (processor) has its
own copy of private variables.

Shared variables are available for
each thread and each thread
can change them

The most frequent bug: missed
private variables

OpenMP and shared memory computers

Programming with MPI is very difficult. We take some part
of job, which should be handled by the system.

It is easy to use OpenMP.

Incremental parallelization

Relatively easy to get speed up on modest sized
computers

Scalable to large processor counts: Altrix

Multi core processors: you may have it

Industry moves in the direction of shared memory
systems.

hybrid MPI+OpenMP minimizes communications

Formation of threads: master thread spawns a team of threads

Serial Parallel

Do i=1,N

EndDo

In order for a loop to be parallelizable, its results should not depend on the
order of its execution. For example, the following loop is not parallel:

do i=2,N
 a(i) =i*a(i-1)
enddo

Yet, this loop can be parallelized:
do i=2,N,2
 a(i) =i*a(i-1)
enddo

If results of execution change with the order of execution, then it is said that
we have race conditions.

Dependencies

Different ways of removing race conditions:

rewrite the algorithm
split loop into two: one, which does not have dependencies (and makes
most of computations) and another, which handles the dependancies
introduce new arrays, which store results for each processor.

Dependencies

Example: assignment of density

OpenMP constructs

Directives Environment

Control Data Synchronization

Do

Schedule

Ordered

Sections

Single

ThreadPrivate

Shared

Private

FirstPrivate

LastPrivate

Reduction

Copyin

Default

Master

Critical

Barrier

Atomic

Ordered

OMP_NUM_TREADS

OMP_DYNAMIC

OMP_SCHEDULE

Static

Dynamic,chunk

Guided, chunk

Common blocks: ThreadPrivate

• Determine which commons are
private and declare them in each
subroutine.

• Use COPYIN(list) directive to
assign the same values to
threadprivate common blocks. List
may contain names of common
blocks and names of variables

• Be careful with large common
blocks: you may run out of memory

SUBROUTINE Mine
Common /A/ x,y,z
Common /B/v,u,w
!$omp threadprivate(/A/,/B/)
!$omp parallel do default (shared)
!omp& copyin(/A/,v,u)

End
SUBROUTINE MineTwo
!$omp threadprivate(/A/,/B/)
 Common /A/ x,y,z
 Common /B/v,u,w

End

• Normally every thread receives
equal amount of indexes to work
on. For example, if you have 10
threads and the loop is do i=1,10000,
then the first thread gets indexes
(1-1000), the second (1001-2000), and
so on. This works ok if there is
equal amount of computations for
each chunk of indexes. If this is not
the case, we need to use
DYNAMIC option in SCHEDULE
clause.

• DYNAMIC has a parameter, chunk,
which defines the number of
indexes assigned the each thread.
The first thread to finish its job
takes the next available chunk.
Parameter chunk is a variable. It
can be assigned inside the code.

SUBROUTINE Mine(N)
 ...
 Nchunk =N/100
!$omp parallel do default (shared)
!$omp+private(i)
!$omp+schedule(dynamic,Nchunk)
 Do i=1,N
 ...
 EndDo

Schedule: handling load balance

Example: find maxima of density

assign threads
dynamically

This condition makes
cpu very different for

different ‘i’

•Critical section defines section
of the code, which is executed
only by one thread at a time. It
may dramatically slow down the
code. If a thread is currently executing
inside a CRITICAL region and another
thread reaches that CRITICAL region and
attempts to execute it, it will block until
the first thread exits that CRITICAL
region.

• Critical section can be used to

✴Sum up private contributions
into shared variables

✴Make I/O contiguous

SUBROUTINE Mine
 ...
!$omp parallel do default (shared)
 ...
!$omp critical
 Global(i,j,k) = Global(i,j,k) +dx
!$omp end critical
!$omp critical
 write(*,*) ‘ I’m here:’,i
!$omp end critical

Synchronization

•
The BARRIER directive synchronizes
all threads in the team.

•When a BARRIER directive is reached,
a thread will wait at that point until
all other threads have reached that
barrier. All threads then resume
executing in parallel the code that
follows the barrier.

•The ATOMIC directive specifies that a
specific memory location must be
updated atomically, rather than letting
multiple threads attempt to write to it.
In essence, this directive provides a
mini-CRITICAL section.

SUBROUTINE Mine
 ...
!$omp parallel do default (shared)
 ...
!$omp critical
 Global(i,j,k) = Global(i,j,k) +dx
!$omp end critical
!$omp critical
 write(*,*) ‘ I’m here:’,i
!$omp end critical

Synchronization

• The REDUCTION clause performs a reduction on the variables that
appear in its list. A private copy for each list variable is created for
each thread. At the end of the reduction, the reduction variable is
applied to all private copies of the shared variable, and the final
result is written to the global shared variable.

• This is the way to get constructs such as scalar products or to find
maximum of elements in an array.

• REDUCTION (operator|intrinsic: list)

• Operators: +,*,-,Max,Min,IAND,IOR,AND,OR
• Examples:

!$omp do reduction(+:x,y) reduction(max:xmax,ymax)

REDUCTION clause

• Environmental variables:

OMP_NUM_THREADS

Sets the maximum number of threads to use during execution. For example:
setenv OMP_NUM_THREADS 8

OMP_SCHEDULE

Applies only to DO, PARALLEL DO (Fortran) and for, parallel for (C/C++) directives
which have their schedule clause set to RUNTIME. The value of this variable determines how
iterations of the loop are scheduled on processors. For example:
setenv OMP_SCHEDULE "guided, 4"
setenv OMP_SCHEDULE "dynamic"

• Shared memory is not always really the true shared memory. On dual and
quad systems the memory is on the same board as the processors. As the
result, the memory access is relatively fast.

• On large many-processors systems memory access is much more
complicated and, as the result, it is typically much more slower. Memory
access is fast if a processor requests memory, which is local (on the same
board). The further the memory is from the processor, the larger is the cost of
accessing it. Formally we have shared memory, but if we are not very careful,
there will be no speed up.

• Improving locality is the main goal.

Memory allocation and access

Improving data locality

• Cash misses, TLB misses: data are retrieved from memory in blocks, which
size depends on particular system. Data should be organized in such a way
that cash is reused many times.

• Re-odering or sorting

• Place data in local arrays

Re-ordering data: 3d FFT, pass in z direction

Re-ordering data: 3d FFT, pass in z direction

good locality

Re-ordering data: 3d FFT, pass in z direction

good locality

non local

Mapping multi dimensional array into 1d memory

• A(Nx,Ny,Nz) : A(i +(j-1)*Nx +(k-1)*Nx*Ny)

k=1 k=2 k=3

Nx Nx Nx Nx Nx Nx Nx Nx Nx

Transposition of matrix

A(i,j,k) A(k,j,i)

Now do FFT along x

Memory distribution: multi processor system

• How an array A(N) is allocated?

proc 1 proc 2 proc 3 proc 4

proc 1 proc 2 proc 3 proc 4

Or this way:

First touch rule

• The way how an array is accessed the first time in the code defines how the
array is distributed: on one processor (for serial access) or on many
processors (for parallel access)

• Note in that in HDF (now almost extinct) one can decide how to allocate an
array.

• On Altrix a parallel distribution seems to be a default for common blocks.

• To improve locality, instead of

COMMON/DATA/X(N),Y(N),Z(N)

write:

COMMON/D1/X(N)

COMMON/D2/Y(N)

COMMON/D3/Z(N)

Memory access on multi processors shared
memory computers

• Normally we do not parallelize simple loops such as
Do i=1,N
 s=s +a(i)
EndDo

• On large computers every access of non-local memory is so expensive that
every effort should be made to parallelize every loop.

• Once everything is done, codes can be very efficient. Halo finder, which
before was taking 15hrs, now works for 15min with 24 procs.

