The Effect of Improved Feedback Recipes on a GASOLINE Galaxy Simulation

Jacqueline McCleary

HIPACC Summer School 2010
Cosmological Galaxy Simulations in GASOLINE

Dwarf Galaxy h603
$M_{\text{vir}} = 3 \times 10^{11} M_{\odot}$
What’s New in the Newest Run?

- Increased N_p so better mass/spatial res.
- Metal line cooling
- Improved SF Recipe:
 - Increase density requirement, lower max T
 - Increase SF efficiency C^* locally
- Stronger Feedback:
 - Energy injection into ISM more efficient, disrupts star formation globally
- Stars form in “star forming regions” in disk, don’t just form in bulge
So... What happened?
Did these refinements generate more realistic galaxies?
With improved recipe, stars form in
localized “star forming regions”!
Bulge/Disk Ratio

![Graph showing the relationship between Bulge to Disk Ratio and Wavelength (nm). The graph includes data points for 'Med. Res.' and 'High Res.' categories.](image)
Gas-to-Dust vs. Mass

Rotation Curve

![Graph showing rotational velocity vs radius (kpc) for different components: Total, DM, and Baryons. The graph includes curves for Med. Res. and High Res.](image-url)
Baryonic Tully-Fisher

\[P = 1.6 \]

McGaugh 2009
Improved Dust
Conclusions

With new and improved SF/SN recipe, h603 has:

– Higher gas-to-star ratio
– Shallower DM profile
– Bulge-to-disk ratio lowered
– Dust content in line with what’s expected for a galaxy of that mass

All in all, a better match to observations
References

• F. Governato et al. 2010, *Nature*, 463, 203L
• Sunrise Documentation: http://code.google.com/p/sunrise/w/list

Acknowledgements:
Thanks to F. Governato (obviously), P. Jonsson, and L. Pope