2010 HIPACC Astro-Computing Summer School

Galaxy Simulations Using the N-Body/SPH code GADGET

T.J. Cox (Carnegie Observatories)

Outline

- I. Who am I and what am I doing here? My perspective, my science, and where my focus will be this week
- 2. An overview of GADGET projects (+other practical I hope information)
- 3. A brief overview of GADGET
- 4. Adding "Astrophysics" to GADGET
- Loose Ends ... data structures, analysis, and visualization (w/ P. Hopkins)
- 6. Odds & Ends, & What's next? (Arepo: the next generation of code)

6. What's Next

- 6.1 A quick word about visualization/analysis
- 6.2 Additional components added to Gadget (an extension of Wed.)
- 6.3 Arepo

- * triton:/home/hipacc-5/Analysis_public/
- * Splash (F90/PGPLOT by D. Price)
 - http://users.monash.edu.au/~dprice/splash/index.html
- * Gadgetviewer (C/F90 by J. Helly)

http://star-www.dur.ac.uk/~jch/gadgetviewer/index.html

* IFRIT (C++/VTK by N. Gnedin)

http://sites.google.com/site/ifrithome/

* TIPSY (by UW/N-body Shop)

http://www-hpcc.astro.washington.edu/tools/tipsy/tipsy.html

*A set of homegrown IDL routines; a well developed backbone, but a very organic front-end - feel free to email me to access this

6.2 Additional components added to Gagdet

* Physical Viscosity: Add a term to hydrodynamic equations which includes bulk and shear viscosities which are determined by a stress-energy tensor.

Sijacki & Springel (2006)

 * Radiative Transfer: SPHRAY (Altay et al. 2008) - individual rays integrated in Monte Carlo fashion
 TRAPHIC (Pawlik & Schaye 2008) - radiation propogated in emission cones
 use Optically Thin Variable Eddinton Tensor (OTVET) approximation (Petkova & Springel 2009) * Magnetic fields: see, e.g., Dolag et al. 1999, Dolag & Stasyszyn 2009, Rosswog & Price 2008, Price 2010

* Relativistic Dynamics: see, e.g., Laguna et al. 1993, Monoghan & Price 2001, Rosswog (2009) * Other improvements:

- different Kernels: anisotropic (Shapiro et al. 1996, Owen et al. 1998), energy weighting (Read et al. 2009)

- improved viscosity: vary it with time (e.g., Dolag et al. 2005)

- mixing: including this via artificial heat conduction (Price 2008, Wadsley et al. 2008)

- estimate density by Voronoi volume (Hess & Springel 2009)

Results from: arXiv:0901.4107, by Volker Springel; (see, also, http://www.mpa-garching.mpg.de/~volker/arepo)

The challenges of modeling galaxy formation and evolution:

- vast range in spatial, temporal scales
- non-linear dynamics; e.g. shocks
- coupled "fluids:" collisionless, multiphase gas
- complex, well-understood physics: non-linear gravity, radiative processes
- complex, poorly-understood physics: star formation, black hole growth, feedback

 \Rightarrow numerical approach essential

Traditional methods for cosmology

Eulerian

discretize space

representation on a mesh (volume elements)

	_	Z		
	1	7	~	

Lagrangian

discretize mass

numerical viscosity

Advantages / disadvantages

SPH

- accurate gravity solvers
- Galilean invariant
- spatially/temporally adaptive
- free surfaces
- artificial viscosity: shocks broadened, source of diffusion
- smoothing can suppress instabilities
- mass resolution limited
- how to handle multiphase media?

Eulerian

- accurate shock solvers (Godunov)
- good resolution of discontinuities
- explicit mixing
- AMR adaptive, but stationary mesh
- truncation error not Galilean invariant
- complicated refinement criteria
- handling of free surfaces
- gravity of collisionless fluid still done with particles

Motivation for something better

- consistency checks
- instabilities in outflows & inflows
- geometrical flexibility
- going beyond sub-resolution models, e.g., shock-induced star formation in galaxy mergers

Hybrid method: moving mesh

(Earlier, related efforts: Pen, Gnedin, Xu)

Springel (2009): "unstructured" mesh & tree code:

- AREPO (Latin palindrome "Sator Square")
- Voronoi tessellation (used elsewhere, e.g. aerodynamics, plasma physics)
- Mesh generated from tracer particles, avoids problems with twisting and tangling
- peculiar to astrophysics: very large dynamic ranges in spatial, temporal scales; motion driven by gravity, especially dark matter

Voronoi mesh Delaunay triangulation

- marker points to generate mesh (Voronoi tessellation)
- locations, motion of mesh-generating points is arbitrary
- AREPO can mimic pure Lagrangian, static mesh & AMR codes
- Galilean-invariant case: mesh-generating points move with local fluid velocity. Example: Kelvin-Helmholtz instability on 50 x 50 mesh.

moving mesh

Rayleigh-Taylor instability; 48 x 144 cells

static mesh

Galilean invariance

- x-velocity boost, v_x
- equations of motion Galilean invariant
- moving mesh results invariant to v_x
- solution with stationary grid sensitive to v_x
- evolution corrupted for large fluid motion relative to stationary mesh
- similar outcome for AMR
- SPH Galilean invariant

The Challenge of Galilean invariance (on a fixed mesh)

- solve $\partial U / \partial t + \nabla \cdot F = 0$ where U (e.g. ρ) known at cell centers and F (e.g. ρv) needed at cell edges
- equations Galilean invariant
- but, numerical stability: must weight value in direction of flow more heavily ("upwind differencing")
- e.g. $F_{i+1/2}$ weights ρ_{i+1} (etc.) more than ρ_i

The Challenge of Galilean invariance (on a fixed mesh)

- add velocity boost = $-2 * v_i$
- equations Galilean invariant
- now $F_{i+1/2}$ weights ρ_i (etc.) more than ρ_{i+1}
- solution not identical in general
- moving mesh invariant, same forwards and backwards (AREPO)

Advantages / disadvantages

AREPO

- accurate gravity solver (hierarchical tree/PM same as Gadget)
- Galilean invariant
- spatially / temporally adaptive
- all types of boundary conditions: free & solid surfaces
- accurate shock solvers (Godunov)
- discontinuities well-resolved
- relatively less diffusive (no artificial viscosity)
- no limits on mass resolution
- path to better sub-resolution models (?)

Disadvantages: ?

Test problems

- isothermal shocks
- Evrard collapse
- interacting blast waves
- Kelvin-Helmholtz
- Rayleigh-Taylor
- fluid mixing
- Zeldovich pancake
- Santa Barbara cluster

Test problems

- isothermal shocks
- Evrard collapse
- interacting blast waves
- Kelvin-Helmholtz
- Rayleigh-Taylor
- fluid mixing
- Zeldovich pancake
- Santa Barbara cluster

Test problems 10.00

- isothermal shocks
- Evrard collapse
- interacting blast waves
- Kelvin-Helmholtz
- Rayleigh-Taylor
- fluid mixing
- Zeldovich pancake
- Santa Barbara cluster

Test problems

- isothermal shocks
- Evrard collapse
- interacting blast waves
- Kelvin-Helmholtz
- Rayleigh-Taylor
- fluid mixing
- Zeldovich pancake
- Santa Barbara cluster

Test problems

- isothermal shocks
- Evrard collapse
- interacting blast waves
- Kelvin-Helmholtz
- Rayleigh-Taylor
- fluid mixing
- Zeldovich pancake
- Santa Barbara cluster

Test problems

- isothermal shocks •
- Evrard collapse •
- interacting blast waves •
- Kelvin-Helmholtz ullet
- Rayleigh-Taylor
- fluid mixing •
- Zeldovich pancake •
- Santa Barbara cluster •

0.70

х

0.80

0.85

Fluid mixing; 768 x 768 cells, reflecting boundaries

Cell Regularization

- easier to optimize resources
- similar timesteps
- odd cell shapes are harder to deal with (less accurate and change more in time)

Cell Regularization

- easier to optimize resources
- similar timesteps
- odd cell shapes are harder to deal with (less accurate and change more in time)

Cell Refinement

- Cells can be added or removed dynamically
- Cells can be determined to have constant mass, or constant volume
- NOTE: cells can also be fixed in space = AMR

Different hydrodynamical simulation codes are broadly in agreement, but show substantial scatter and differences in detail THE SANTA BARBARA CLUSTER COMPARISON PROJECT

Frenk, White & 23 co-authors (1999)

Mesh codes appear to produce higher entropy in the cores of clusters RADIAL ENTROPY PROFILE

Ascasibar, Yepes, Müller & Gottlöber (2003): claim that more accurate SPH simulations based on entropyformulation tend to give higher entropy in the core

The high entropy found in previous mesh-based calculations of the Santa-Barbara cluster was in part caused by dissipation from noise in the N-body gravitational field

THERMODYNAMIC PROFILES OF THE SB-CLUSTER CALCULATED WITH SPH AND AREPO

The spherically averaged dark matter and gas density profiles between the moving-mesh code and GADGET agree well **DENSITY PROFILES OF THE SB-CLUSTER CALCULATED WITH SPH AND AREPO**

46

Galaxy interactions: In moving-mesh calculations, "empty space" must be (at least coarsely) covered with cells, unlike in SPH

Existing SPH initial conditions can be translated automatically to initial conditions for AREPO

Runs with star formation, BH growth in progress.

Preliminary result with star formation, no BHs.

Potential applications

- cosmological disk formation
- outflows & inflows
- ram pressure stripping
- shock-induced star formation
- Including radiative transfer
- galaxy mergers:

-simulation library / archive

-more physical sub-resolution models