Mergers and Mass Assembly of Dark Matter Halos & Galaxies

Chung-Pei Ma Onsi Fakhouri James McBride (UC Berkeley) Mike Boylan-Kolchin

(MPA --> Southern UC)

Claude-Andre Faucher-Giguere Dusan Keres (Harvard --> UC Berkeley)

Springel et al (2005) Boylan-Kolchin et al (2009) Particle number: 2160 ³ Particle mass: 8.6×10^8 6.9x10 ⁶ h ⁻¹ M _{sun} Box size: 500 100 h ⁻¹ Mpc DM subhalos: 760 million $0 = 100$ h ⁻¹ Mpc DM halos: \sim 18 million total \sim 500,000 with M > 10 ¹² M _{sun} at z=0 Halo merger trees: constructed from 46 (57) outputs from z=6.2 (15) to 0	Millen	nium I +	+ II Sin	nulations	
Particle number: 2160 ³ 2160 ³ Particle mass: 8.6×10^8 6.9×10^6 $h^{-1} M_{sun}$ Box size: 500 100 $h^{-1} Mpc$ DM subhalos: 760 million 590 million (from z=127 to 0) DM halos: ~ 18 million total $\sim 500,000$ with $M > 10^{12} M_{sun}$ at z=0 Halo merger trees: constructed from 46 (57) outputs from z=6.2 (15) to 0	Springel et al (2005) Boylan-Kolchin et al (2009)				
Box size: 500 100 h^{-1} MpcDM subhalos: 760 million 590 million (from z=127 to 0)DM halos: \sim 18 million total \sim 500,000 with M > 10^{12} M _{sun} at z=0Halo merger trees:constructed from 46 (57) outputs from z=6.2 (15) to 0	Particle numbe Particle mass:	er: 2160 ³ 8.6 x 10 ⁸	2160 ³ 6.9x10 ⁶	h ⁻¹ M	
DM subhalos: 760 million 590 million (from z=127 to 0) DM halos: ~ 18 million total ~ 500,000 with M > 10 ¹² M _{sun} at z=0 Halo merger trees: constructed from 46 (57) outputs from z=6.2 (15) to 0	Box size:	500	100	h ⁻¹ Mpc	
~ 18 million total ~ 500,000 with M > 10^{12} M _{sun} at z=0 Halo merger trees: constructed from 46 (57) outputs from z=6.2 (15) to 0	DM subhalos: 760 million 590 million (from z=127 to 0) DM halos:				
Halo merger trees: constructed from 46 (57) outputs from z=6.2 (15) to 0	~ 18 minion total ~ 500,000 with M > 10^{12} M _{sun} at z=0				
$(\Delta z=0.02 \text{ at low } z)$	Halo merger tre constructeo (Δz=0.02 at	ees: d from 46 (t low z)	57) output	ts from z=6.2 (15) to 0	

Dark Matter Accretion Rate

$$McBride et al. (2009)$$

$$M(z) = M_0 (1+z)^{\beta} e^{-\gamma z}$$
Fakhouri et al. (2010)

$$\frac{\dot{M}}{M} = [\gamma(1+z) - \beta] H_0 [\Omega_m (1+z)^3 + \Omega_\Lambda]^{1/2}$$

$$\dot{M}_{mean} = 46.1 \frac{M_{\odot}}{y_{\rm T}} \left(\frac{M}{10^{12}}\right)^{1.1} (1+1.11z) [\Omega_m (1+z)^3 + \Omega_\Lambda]^{1/2}$$

$$\dot{M}_{med} = 25.3 \frac{M_{\odot}}{y_{\rm T}} \left(\frac{M}{10^{12}}\right)^{1.1} (1+1.65z) [\Omega_m (1+z)^3 + \Omega_\Lambda]^{1/2}$$
General trends: (1) Specific accretion rate depends weakly on M

(2) Rate increases with redshift as $\sim (1+z)^{1.5}$ at $z > \sim 1$ Zero-point mean value is similar to Neistein et al (2008), Genel et al (2008)

Summary

Dark Matter Assembly

The mean rate of halo-halo mergers follows a simple universal form. dN/dz depends weakly on descendant mass and redshift dN/dt increases as (1+z)ⁿ, n~2 to 2.3

Halo mass accretion history M(z) is well fit by a two-parameter function

Median dark matter accretion rate is 54 M_{sun}/yr today for 2x10¹² M_{sun} halos, Implied baryon accretion rates are 9, 15, 39, 77 M_{sun}/yr at z=0, 1, 2, and 3. Distribution of accretion rate is broader at high z.

Baryon Assembly

Without galactic winds, baryon fraction & accretion rate are ~ 1/6 of dark matter, but M* is too high
With galactic winds, baryon fraction, SFR, M* are all much reduced in M < 10^{11.5} M_{sun} halos
In progress:
Find simple analytic approximations for various baryon rates in different wind models