Galaxies in dark matter halos: luminosity-velocity relation, abundance and baryon content

> arXiv:1005.1289 arXiv:1002.3660

S.Trujillo-Gomez (NMSU) in collaboration with: A. Klypin (NMSU), J. Primack (UCSC) & A.J. Romanowsky (UCO/Lick Observatory)

Santa Cruz Galaxy Workshop 2010 - August 16, 2010

outline

- introduction
- the luminosity-velocity relation
- the galaxies in our halos
 - the simulation
 - model LV relation
 - baryon content
 - galaxy circular velocity function
- conclusions
- preliminary results

• simple questions:

- simple questions:
 - what kind of galaxy will populate a given DM halo and which factors are determinant?

- simple questions:
 - what kind of galaxy will populate a given DM halo and which factors are determinant?
 - can we obtain the *right* galaxies using ΛCDM ?

- simple questions:
 - what kind of galaxy will populate a given DM halo and which factors are determinant?
 - can we obtain the *right* galaxies using ΛCDM ?
 - does ACDM predict the correct distributions?

- simple questions:
 - what kind of galaxy will populate a given DM halo and which factors are determinant?
 - can we obtain the *right* galaxies using ΛCDM ?
 - does ACDM predict the correct distributions?
- not so simple problems: we understand physics of DM but baryons are complex to model

- simple questions:
 - what kind of galaxy will populate a given DM halo and which factors are determinant?
 - can we obtain the *right* galaxies using ΛCDM ?
 - does ACDM predict the correct distributions?
- not so simple problems: we understand physics of DM but baryons are complex to model
 - gasphysics, star formation, feedback, radiation, stripping, interactions, hierarchical formation, etc.

- simple questions:
 - what kind of galaxy will populate a given DM halo and which factors are determinant?
 - can we obtain the *right* galaxies using ΛCDM ?
 - does ACDM predict the correct distributions?
- not so simple problems: we understand physics of DM but baryons are complex to model
 - gasphysics, star formation, feedback, radiation, stripping, interactions, hierarchical formation, etc.
 - difficult for models to account for luminosity, mass, velocity distributions, clustering, etc.

- 3 main approaches:
 - I. full N-body+hydro cosmological simulations
 - basic physics included
 - resolution good enough to produce some realistic galaxies (e.g. Governato et al. 2010, Agertz et al. 2010)
 - test scaling laws
 - feedback, subgrid processes not understood
 - still far from producing large samples to test distributions

- 2. semi-analytics (SAMs)
 - halo model or cosmological DM-only simulations
 - simplifying assumptions about key processes (cooling, SF, feedback, dynamical evolution, etc)
 - computationally efficient
 - can produce large statistical samples
 - difficult to calibrate many free parameters not well constrained by observations
 - still difficult to reconcile with observations

- abundance matching (Kravtsov et al. 2004, Conroy et al. 2006)
 - assume basic baryon distributions: LF, SMF
 - one-to-one monotonic relation between dynamical and baryon mass
 - recovers galaxy correlation function over luminosity and redshift !

- tests/diagnostics:
 - statistics: LF, stellar MF, galaxy velocity function
 - scaling relations: Tully-Fisher, Faber-Jackson, baryonic TF, radius-velocity relation, M_{halo}-M_{star} relation
 - clustering: correlation function, surface density profiles, morphologies, lensing statistics

- recompiled/reanalyzed the largest/highest quality data sets across galaxy types (~1000 spirals + 52 early types)
- 3 orders of magnitude in luminosity and mass
 - Tully-Fisher relation
 - mass modeling of ellipticals and S0s
- does not assume functional form
- dwarfs to giant ellipticals

- recompiled/reanalyzed the largest/highest quality data sets across galaxy types (~1000 spirals + 52 early types)
- 3 orders of magnitude in luminosity and mass
 - Tully-Fisher relation
 - mass modeling of ellipticals and S0s
- does not assume functional form
- dwarfs to giant ellipticals

- r-band photometry avoids dust, recent SF
- uses a general metric: V₁₀
 - circular (not rotation) velocity at 10kpc
 - probe of dynamical mass
 - avoids complex baryon dynamics in central region (no V_{2.2})
 - robust probe of flat regime of observed rotation curves

- not a power-law: dwarfs are underluminous
- shows morphological dependence
 - stellar evolution or baryon assembly?

- not a power-law: dwarfs are underluminous
- shows morphological dependence
 - stellar evolution or baryon assembly?

- not a power-law: dwarfs are underluminous
- shows morphological dependence
 - stellar evolution or baryon assembly?

- not a power-law: dwarfs are underluminous
- shows morphological dependence
 - stellar evolution or baryon assembly?

Trujillo-Gomez et al. 2010

the galaxies in our halos - the simulation (arXiv:1002.3660)

- Adaptive Refinement Tree code (Kravtsov 1997, 1999)
- $\Omega_{\rm m} = (1 \Omega_{\Lambda}) = 0.27$, h=0.7, $\sigma_8 = 0.82$, n=0.95
 - WMAP7, WMAP5+BAO+SNe, others
- 8B particles in (250 Mpc/h)³ ~ 1.8 times SDSS DR6
- AMR: min. mass=1.35e8 M_{sun}/h, force resolution=1kpc/h
- Bound-Density-Maxima: 9M halos, ~3M complete (>50km/s)
- V_{circ} main property of objects instead of mass
 - inner mass distribution
 - stripping-resistant
 - observable

$$V_{
m circ} = \sqrt{rac{GM(< r)}{r}} \Big|_{
m max}$$

the galaxies in our halos - the model

- I. obtain V_{acc} for each halo using merger trees - gives more direct correspondence to M_{star}
- 2. abundance matching: rank-order DM halos by V_{acc} and assign luminosities by matching abundance of SDSS DR6 LF: $n(>V_{acc}) = n(>L)$
- perform AM to assign stellar masses using SDSS DR7 GSMF
- 4. add average cold gas mass from observations (Baldry et al. 2008)

the galaxies in our halos

Trujillo-Gomez et al. 2010

5. using halo density profiles calculate V_{10} and add the baryon contribution enclosed within 10kpc

6. add the standard contribution to V_{10} due to adiabatic contraction:

 $M_{\rm tot}(r_{\rm i})r_{\rm i} = [M_{\rm DM}(r_{\rm i})(1 - f_{\rm bar}) + M_{\rm bar}(r_{\rm f})]r_{\rm f}$

the galaxies in our halos

Trujillo-Gomez et al. 2010

5. using halo density profiles calculate V_{10} and add the baryon contribution enclosed within 10kpc

6. add the standard contribution to V_{10} due to adiabatic contraction:

 $M_{\rm tot}(r_{\rm i})r_{\rm i} = [M_{\rm DM}(r_{\rm i})(1 - f_{\rm bar}) + M_{\rm bar}(r_{\rm f})]r_{\rm f}$

- model matches
 average populations better model should
 include dichotomy
- uncertain faint end but possible to constrain
- max AC effect is small and consistent with data
- baryonless dwarfs constrained only by luminosity
- no scatter included small effect except at bright end

- model matches
 average populations better model should
 include dichotomy
- uncertain faint end but possible to constrain
- max AC effect is small and consistent with data
- baryonless dwarfs constrained only by luminosity
- no scatter included small effect except at bright end

- model matches
 average populations better model should
 include dichotomy
- uncertain faint end but possible to constrain
- max AC effect is small and consistent with data
- baryonless dwarfs constrained only by luminosity
- no scatter included small effect except at bright end

- model matches
 average populations better model should
 include dichotomy
- uncertain faint end but possible to constrain
- max AC effect is small and consistent with data
- baryonless dwarfs constrained only by luminosity
- no scatter included small effect except at bright end

model LV relation - other results

- Dutton et al. 2010 analytical model of disk formation:
 - no mergers: smooth DM accretion
 - angular momentum distribution of gas same as DM
 - momentum/energy driven feedback (mass eject
 - adiabatic contraction/expansion
 - results inconsistent with this work:

- AC: 2σ offset in zero-point of TF regardless of feedback efficiency (vs.
 <10% effect in our analysis)
- no AC: offset at high masses
- difficult to constrain given assumptions (smooth accretion, no bulges, no gas flows)

model LV relation - other results

- Guo et al. 2010 Abundance Matching:
 - performed using halo MF from Millenium I & II (parameters several sigma away from current obs give >30% MW halos)
 - stellar mass TF relation: no corrections made for baryons
 - overall agreement but underpredict v_c by ~25% where spirals dominate

baryon content

- BTF generalized to all types
- insensitive to SF and stellar pop. evolution
- may unite disks and ellipticals
- choice of IMF = factor of ~2 unless gas dominated

Trujillo-Gomez et al. 2010

baryon content

- BTF generalized to all types
- insensitive to SF and stellar pop. evolution
- may unite disks and ellipticals
- choice of IMF = factor of ~2 unless gas dominated

Trujillo-Gomez et al. 2010

baryon content

- BTF generalized to all types
- insensitive to SF and stellar pop. evolution
- may unite disks and ellipticals
- choice of IMF = factor of ~2 unless gas dominated

- measures abundance as function of "mass"
- sensitive to both DM and baryons
- further constrains LV relation
- difficult to measure directly
 - late types: HIPASS (Zwaan et al. 2010)
 - early types: SDSS + Faber-Jackson + σ₀-V_{circ} (Chae 2010)

- V_{acc} does ~50% better than V_{now} for MW
- overall agreement 80-400km/s
- number of MWs predicted to within 50% regardless of AC
- LV: need AC for ellipticals?
 - >400km/s uncertain (BCGs?)
- <80km/s GCVF=halo VF - too many dwarfs (incomplete LF?)

 observed galaxies follow tight relation between dynamical mass and luminosity

- observed galaxies follow tight relation between dynamical mass and luminosity
- AM+simple model accounts for LV relation in a statistical sense - galaxies assigned to correct potential wells

- observed galaxies follow tight relation between dynamical mass and luminosity
- AM+simple model accounts for LV relation in a statistical sense - galaxies assigned to correct potential wells
 - v_{acc} good proxy for final stellar mass/luminosity

- observed galaxies follow tight relation between dynamical mass and luminosity
- AM+simple model accounts for LV relation in a statistical sense - galaxies assigned to correct potential wells
 - v_{acc} good proxy for final stellar mass/luminosity
 - adiabatic contraction brackets observations within uncertainties

- observed galaxies follow tight relation between dynamical mass and luminosity
- AM+simple model accounts for LV relation in a statistical sense - galaxies assigned to correct potential wells
 - v_{acc} good proxy for final stellar mass/luminosity
 - adiabatic contraction brackets observations within uncertainties
- baryon content: need more dwarfs and Es

- observed galaxies follow tight relation between dynamical mass and luminosity
- AM+simple model accounts for LV relation in a statistical sense - galaxies assigned to correct potential wells
 - v_{acc} good proxy for final stellar mass/luminosity
 - adiabatic contraction brackets observations within uncertainties
- baryon content: need more dwarfs and Es
- morphologies: need to model different populations

- observed galaxies follow tight relation between dynamical mass and luminosity
- AM+simple model accounts for LV relation in a statistical sense - galaxies assigned to correct potential wells
 - v_{acc} good proxy for final stellar mass/luminosity
 - adiabatic contraction brackets observations within uncertainties
- baryon content: need more dwarfs and Es
- morphologies: need to model different populations
- abundance constrain satisfied but dwarfs are still missing - SB completeness?

coming attractions

2-point galaxy correlation function • effect of scatter in LF

